Apache Doris dialect for SQLAlchemy
Project description
Apache Doris Dialect for SQLAlchemy
This is a fork of sqlalchemy-doris project. Which is in turn - a fork of pydoris
This implementation fixes a bunch of issues with typing. And adds support for sqlalchemy ORM.
Features
- support SQLAlchemy 2.
- support pymysql and mysqlclient as driver.
- support SQLAlchemy table creation
- support for SQLALchemy ORM
- convenient DorisBase class for declaring ORM models
Installation
Use
pip install doris-alchemy[pymysql]
for pymysql.
Or
pip install doris-alchemy[mysqldb]
for mysqlclient.
Note doris-alchemy uses pymysql as default connector for compatibility. If both pymysql and mysqlclient are installed, mysqlclient is preferred.
Usage
from sqlalchemy import create_engine
engine = create_engine(f"doris+pymysql://{user}:{password}@{host}:{port}/{database}?charset=utf8mb4")
# or
engine = create_engine(f"doris+mysqldb://{user}:{password}@{host}:{port}/{database}?charset=utf8mb4")
Create Table (Imperative style)
import sqlalchemy as sa
from sqlalchemy import create_engine
from doris_alchemy import datatype
from doris_alchemy import HASH, RANGE
engine = create_engine(f"doris://{user}:{password}@{host}:{port}/{database}?charset=utf8mb4")
metadata_obj = sa.MetaData()
table = Table(
'dummy_table',
METADATA,
Column('id', Integer, primary_key=True),
Column('name', String(64), nullable=False),
Column('description', Text),
Column('date', DateTime),
doris_unique_key=('id'),
doris_partition_by=RANGE('id'),
doris_distributed_by=HASH('id'),
doris_properties={"replication_allocation": "tag.location.default: 1"},
)
table.create(engine)
SQL is
CREATE TABLE dummy_table (
id INTEGER NOT NULL,
name VARCHAR(64) NOT NULL,
description TEXT,
date DATETIME
)
UNIQUE KEY (`id`)
PARTITION BY RANGE(`id`) ()
DISTRIBUTED BY HASH(`id`) BUCKETS auto
PROPERTIES (
"replication_allocation" = "tag.location.default: 1"
)
Create Table (Declarative style / ORM)
from sqlalchemy import create_engine
from doris_alchemy import datatype, DorisBase
from doris_alchemy import HASH, RANGE
engine = create_engine(f"doris://{user}:{password}@{host}:{port}/{database}?charset=utf8mb4")
class Dummy(DorisBase):
__tablename__ = 'dummy_two'
id: Mapped[int] = mapped_column(BigInteger, primary_key=True)
name: Mapped[str] = mapped_column(String(127))
description: Mapped[str]
date: Mapped[datetime]
__table_args__ = {
'doris_properties': {"replication_allocation": "tag.location.default: 1"}
}
doris_unique_key = 'id'
doris_distributed_by = HASH('id')
doris_partition_by = RANGE('id')
DorisBase.metadata.create_all(engine)
SQL is
CREATE TABLE dummy_two (
id BIGINT NOT NULL,
name VARCHAR(127) NOT NULL,
description TEXT NOT NULL,
date DATETIME NOT NULL
)
UNIQUE KEY (`id`)
PARTITION BY RANGE(`id`) ()
DISTRIBUTED BY HASH(`id`) BUCKETS auto
PROPERTIES (
"replication_allocation" = "tag.location.default: 1"
)
Insertin and selecting
from sqlalchemy.orm import Session
from sqlalchemy import select, insert, create_engine
from datetime import datetime
engine = create_engine(f"doris+mysqldb://{USER}:{PWD}@{HOST}:{PORT}/{DB}")
row = {
'id': 0,
'name': 'Airbus',
'description': 'Construction bureau',
'date': datetime(2024, 2, 10)
}
with Session(engine) as s:
q = insert(Dummy).values([row])
s.execute(q)
sel = select(Dummy)
res = s.execute(sel)
print(list(res))
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
doris_alchemy-0.2.3.tar.gz
(19.2 kB
view details)
Built Distribution
File details
Details for the file doris_alchemy-0.2.3.tar.gz
.
File metadata
- Download URL: doris_alchemy-0.2.3.tar.gz
- Upload date:
- Size: 19.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a4cadb3191d1c9db1a1ca435daab7743ebe4a2947f2efc906003142fe4414c59 |
|
MD5 | e10dd9c4f058aa94982a17c9b23f210a |
|
BLAKE2b-256 | d378e682be8e7081232e5d645b56645b1269f319aaf0fda889c59dc063bd1665 |
File details
Details for the file doris_alchemy-0.2.3-py3-none-any.whl
.
File metadata
- Download URL: doris_alchemy-0.2.3-py3-none-any.whl
- Upload date:
- Size: 18.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0a58adcf098ec40304f6e1832ed1abb47fb49d7c890df6da8985b6045ce8a43f |
|
MD5 | 137809257b198cdf38852f4ed621b0fe |
|
BLAKE2b-256 | a087fb9d63b67465acb06c62927f1b710db8ccf34d3182b235269fc1d73fe53c |