Sentiment analysis library for russian language
Project description
Dostoevsky 
Sentiment analysis library for russian language
Install
Please note that Dostoevsky supports only Python 3.6+ on both Linux and Windows
$ pip install dostoevsky
Social network model [FastText]
This model was trained on RuSentiment dataset and achieves up to ~0.71 F1 score.
Usage
First of all, you'll need to download binary model:
$ python -m dostoevsky download fasttext-social-network-model
Then you can use sentiment analyzer:
from dostoevsky.tokenization import RegexTokenizer
from dostoevsky.models import FastTextSocialNetworkModel
tokenizer = RegexTokenizer()
tokens = tokenizer.split('всё очень плохо') # [('всё', None), ('очень', None), ('плохо', None)]
model = FastTextSocialNetworkModel(tokenizer=tokenizer)
messages = [
'привет',
'я люблю тебя!!',
'малолетние дебилы'
]
results = model.predict(messages, k=2)
for message, sentiment in zip(messages, results):
# привет -> {'speech': 1.0000100135803223, 'skip': 0.0020607432816177607}
# люблю тебя!! -> {'positive': 0.9886782765388489, 'skip': 0.005394937004894018}
# малолетние дебилы -> {'negative': 0.9525841474533081, 'neutral': 0.13661839067935944}]
print(message, '->', sentiment)
If you use the library in a research project, please include the following citation for the RuSentiment data:
@inproceedings{rogers-etal-2018-rusentiment,
title = "{R}u{S}entiment: An Enriched Sentiment Analysis Dataset for Social Media in {R}ussian",
author = "Rogers, Anna and
Romanov, Alexey and
Rumshisky, Anna and
Volkova, Svitlana and
Gronas, Mikhail and
Gribov, Alex",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/C18-1064",
pages = "755--763",
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file dostoevsky-0.6.0.tar.gz.
File metadata
- Download URL: dostoevsky-0.6.0.tar.gz
- Upload date:
- Size: 7.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.5
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
d058cd94fdf0e3c0131b15eb1383f464631ab76121442f22ea737197b60ab0c3
|
|
| MD5 |
2fe0ef39db44414a727f676d9dd1929d
|
|
| BLAKE2b-256 |
b5a82c97c7eed751b7a98607cfbbeb591cbdf0cd4e93ae1d539a13ad41b169a0
|
File details
Details for the file dostoevsky-0.6.0-py2.py3-none-any.whl.
File metadata
- Download URL: dostoevsky-0.6.0-py2.py3-none-any.whl
- Upload date:
- Size: 8.5 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.5
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
172e46f2d482466dbd4d7ed42bb07a899293948998632adc5d03d5625f3ec4e8
|
|
| MD5 |
733d4ae54f27a9bb8e93f815f508b963
|
|
| BLAKE2b-256 |
b0f1662caeb5e3e3aa65dfcb7ece0a07fdd2c9184cf4c63fbcd53a381196d603
|