Skip to main content

Sentiment analysis library for russian language

Project description

Dostoevsky Build Status

Sentiment analysis library for russian language

Install

Please note that Dostoevsky supports only Python 3.6+ on both Linux and Windows

$ pip install dostoevsky

Social network model [FastText]

This model was trained on RuSentiment dataset and achieves up to ~0.71 F1 score.

Usage

First of all, you'll need to download binary model:

$ python -m dostoevsky download fasttext-social-network-model

Then you can use sentiment analyzer:

from dostoevsky.tokenization import RegexTokenizer
from dostoevsky.models import FastTextSocialNetworkModel

tokenizer = RegexTokenizer()
tokens = tokenizer.split('всё очень плохо')  # [('всё', None), ('очень', None), ('плохо', None)]

model = FastTextSocialNetworkModel(tokenizer=tokenizer)

messages = [
    'привет',
    'я люблю тебя!!',
    'малолетние дебилы'
]

results = model.predict(messages, k=2)

for message, sentiment in zip(messages, results):
    # привет -> {'speech': 1.0000100135803223, 'skip': 0.0020607432816177607}
    # люблю тебя!! -> {'positive': 0.9886782765388489, 'skip': 0.005394937004894018}
    # малолетние дебилы -> {'negative': 0.9525841474533081, 'neutral': 0.13661839067935944}]
    print(message, '->', sentiment)

If you use the library in a research project, please include the following citation for the RuSentiment data:

@inproceedings{rogers-etal-2018-rusentiment,
    title = "{R}u{S}entiment: An Enriched Sentiment Analysis Dataset for Social Media in {R}ussian",
    author = "Rogers, Anna  and
      Romanov, Alexey  and
      Rumshisky, Anna  and
      Volkova, Svitlana  and
      Gronas, Mikhail  and
      Gribov, Alex",
    booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
    month = aug,
    year = "2018",
    address = "Santa Fe, New Mexico, USA",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/C18-1064",
    pages = "755--763",
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dostoevsky-0.6.0.tar.gz (7.4 kB view details)

Uploaded Source

Built Distribution

dostoevsky-0.6.0-py2.py3-none-any.whl (8.5 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file dostoevsky-0.6.0.tar.gz.

File metadata

  • Download URL: dostoevsky-0.6.0.tar.gz
  • Upload date:
  • Size: 7.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.5

File hashes

Hashes for dostoevsky-0.6.0.tar.gz
Algorithm Hash digest
SHA256 d058cd94fdf0e3c0131b15eb1383f464631ab76121442f22ea737197b60ab0c3
MD5 2fe0ef39db44414a727f676d9dd1929d
BLAKE2b-256 b5a82c97c7eed751b7a98607cfbbeb591cbdf0cd4e93ae1d539a13ad41b169a0

See more details on using hashes here.

File details

Details for the file dostoevsky-0.6.0-py2.py3-none-any.whl.

File metadata

  • Download URL: dostoevsky-0.6.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 8.5 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.5

File hashes

Hashes for dostoevsky-0.6.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 172e46f2d482466dbd4d7ed42bb07a899293948998632adc5d03d5625f3ec4e8
MD5 733d4ae54f27a9bb8e93f815f508b963
BLAKE2b-256 b0f1662caeb5e3e3aa65dfcb7ece0a07fdd2c9184cf4c63fbcd53a381196d603

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page