Skip to main content

Sentiment analysis library for russian language

Project description

Dostoevsky Build Status

Sentiment analysis library for russian language

Install

Please note that Dostoevsky supports only Python 3.6+ on both Linux and Windows

$ pip install dostoevsky

Social network model [FastText]

This model was trained on RuSentiment dataset and achieves up to ~0.71 F1 score.

Usage

First of all, you'll need to download binary model:

$ python -m dostoevsky download fasttext-social-network-model

Then you can use sentiment analyzer:

from dostoevsky.tokenization import RegexTokenizer
from dostoevsky.models import FastTextSocialNetworkModel

tokenizer = RegexTokenizer()
tokens = tokenizer.split('всё очень плохо')  # [('всё', None), ('очень', None), ('плохо', None)]

model = FastTextSocialNetworkModel(tokenizer=tokenizer)

messages = [
    'привет',
    'я люблю тебя!!',
    'малолетние дебилы'
]

results = model.predict(messages, k=2)

for message, sentiment in zip(messages, results):
    # привет -> {'speech': 1.0000100135803223, 'skip': 0.0020607432816177607}
    # люблю тебя!! -> {'positive': 0.9886782765388489, 'skip': 0.005394937004894018}
    # малолетние дебилы -> {'negative': 0.9525841474533081, 'neutral': 0.13661839067935944}]
    print(message, '->', sentiment)

If you use the library in a research project, please include the following citation for the RuSentiment data:

@inproceedings{rogers-etal-2018-rusentiment,
    title = "{R}u{S}entiment: An Enriched Sentiment Analysis Dataset for Social Media in {R}ussian",
    author = "Rogers, Anna  and
      Romanov, Alexey  and
      Rumshisky, Anna  and
      Volkova, Svitlana  and
      Gronas, Mikhail  and
      Gribov, Alex",
    booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
    month = aug,
    year = "2018",
    address = "Santa Fe, New Mexico, USA",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/C18-1064",
    pages = "755--763",
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dostoevsky-0.6.0.tar.gz (7.4 kB view hashes)

Uploaded source

Built Distribution

dostoevsky-0.6.0-py2.py3-none-any.whl (8.5 kB view hashes)

Uploaded py2 py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page