Skip to main content

Implements Double Debias Estimator

Project description

double_debias

Basic Build

This package implements the double debiased estimator from "Double/Debiased Machine Learning for Treatment and Structural Parameters" by Chernozhukov et. al.

installation

pip install double_debias_joe5saia

Usage

This package estimates models of the form y = theta D + g(z) + e where z is a high dimensional object.

from sklearn.ensemble import GradientBoostingRegressor
from sklearn.linear_model import LinearRegression
dd = double_debias(y=np.array([i for i in range(0,10)]), 
                   D= np.array([i//2 for i in range(0,10)]),
                   p.array([[i**2 for i in range(0,10)], [i**3 for i in range(0,10)]]).transpose(),
                   y_method= GradientBoostingRegressor(n_estimators=1000),
                   D_method= LinearRegression(),
                   n_folds=3)
dd.est_theta()

The user initializes the estimator object with the data for y, D, and z along with the method for estimating y ~ g(z) + e and D ~ f(z) + e. The y_method and D_method can be any model from the sklearn library that implements the fit and predict methods. The user may also supply their own class that implements these methods. This class does no parameter tuning or cross validation. Parameter tuning is left up to the user.

Custom Estimator Methods

The user may supply their own estimators if these are not available in sklearn. This module assumes that the class passed has the fit and predict methods, i.e. the following code must work

z = np.array([[i**2 for i in range(0,10)], [i**3 for i in range(0,10)]]).transpose()
y = np.array([i for i in range(0,10)])
m = my_estimator()
m.fit(z, y)
m.predict(z)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

double_debias-0.0.5.tar.gz (4.4 kB view details)

Uploaded Source

Built Distribution

double_debias-0.0.5-py3-none-any.whl (5.8 kB view details)

Uploaded Python 3

File details

Details for the file double_debias-0.0.5.tar.gz.

File metadata

  • Download URL: double_debias-0.0.5.tar.gz
  • Upload date:
  • Size: 4.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.56.2 CPython/3.9.1

File hashes

Hashes for double_debias-0.0.5.tar.gz
Algorithm Hash digest
SHA256 96372903d2021a22eecc15bac71bccac348c33a1e51b147bcaf5ac1bf2b4cba9
MD5 799766bb4499985fd8dceda71065c24f
BLAKE2b-256 8cce74257b20b32a7821a877c591037ca4a928dbbfca1fcde3136e5bccf8d95e

See more details on using hashes here.

File details

Details for the file double_debias-0.0.5-py3-none-any.whl.

File metadata

  • Download URL: double_debias-0.0.5-py3-none-any.whl
  • Upload date:
  • Size: 5.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.56.2 CPython/3.9.1

File hashes

Hashes for double_debias-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 7ade1f2349209b6da25ae5a7cd061ed9c34b9d203343b461c137bd2ad6d95f84
MD5 8d904aecdb97daa4e5c5778ba7eebd33
BLAKE2b-256 a64cef961365adda2f4a21ff5cb227c8a83281a5fe6d1dab4d6e7a6799301eb4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page