Implements Double Debias Estimator
Project description
double_debias
This package implements the double debiased estimator from "Double/Debiased Machine Learning for Treatment and Structural Parameters" by Chernozhukov et. al.
installation
pip install double_debias_joe5saia
Usage
This package estimates models of the form y = theta D + g(z) + e where z is a high dimensional object.
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.linear_model import LinearRegression
dd = double_debias(y=np.array([i for i in range(0,10)]),
D= np.array([i//2 for i in range(0,10)]),
p.array([[i**2 for i in range(0,10)], [i**3 for i in range(0,10)]]).transpose(),
y_method= GradientBoostingRegressor(n_estimators=1000),
D_method= LinearRegression(),
n_folds=3)
dd.est_theta()
The user initializes the estimator object with the data for y, D, and z along with the method for estimating y ~ g(z) + e and D ~ f(z) + e.
The y_method
and D_method
can be any model from the sklearn library that implements the fit and predict methods. The user may also supply their
own class that implements these methods. This class does no parameter tuning or cross validation. Parameter tuning is left up to the user.
Custom Estimator Methods
The user may supply their own estimators if these are not available in sklearn. This module assumes that the class passed has the fit and predict methods, i.e. the following code must work
z = np.array([[i**2 for i in range(0,10)], [i**3 for i in range(0,10)]]).transpose()
y = np.array([i for i in range(0,10)])
m = my_estimator()
m.fit(z, y)
m.predict(z)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file double_debias-0.0.5.tar.gz
.
File metadata
- Download URL: double_debias-0.0.5.tar.gz
- Upload date:
- Size: 4.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.56.2 CPython/3.9.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 96372903d2021a22eecc15bac71bccac348c33a1e51b147bcaf5ac1bf2b4cba9 |
|
MD5 | 799766bb4499985fd8dceda71065c24f |
|
BLAKE2b-256 | 8cce74257b20b32a7821a877c591037ca4a928dbbfca1fcde3136e5bccf8d95e |
File details
Details for the file double_debias-0.0.5-py3-none-any.whl
.
File metadata
- Download URL: double_debias-0.0.5-py3-none-any.whl
- Upload date:
- Size: 5.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.56.2 CPython/3.9.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7ade1f2349209b6da25ae5a7cd061ed9c34b9d203343b461c137bd2ad6d95f84 |
|
MD5 | 8d904aecdb97daa4e5c5778ba7eebd33 |
|
BLAKE2b-256 | a64cef961365adda2f4a21ff5cb227c8a83281a5fe6d1dab4d6e7a6799301eb4 |