Skip to main content

Implements Double Debias Estimator

Project description

double_debias

Basic Build

This package implements the double debiased estimator from "Double/Debiased Machine Learning for Treatment and Structural Parameters" by Chernozhukov et. al.

installation

pip install double_debias_joe5saia

Usage

This package estimates models of the form y = theta D + g(z) + e where z is a high dimensional object.

from sklearn.ensemble import GradientBoostingRegressor
from sklearn.linear_model import LinearRegression
dd = double_debias(y=np.array([i for i in range(0,10)]), 
                   D= np.array([i//2 for i in range(0,10)]),
                   p.array([[i**2 for i in range(0,10)], [i**3 for i in range(0,10)]]).transpose(),
                   y_method= GradientBoostingRegressor(n_estimators=1000),
                   D_method= LinearRegression(),
                   n_folds=3)
dd.est_theta()

The user initializes the estimator object with the data for y, D, and z along with the method for estimating y ~ g(z) + e and D ~ f(z) + e. The y_method and D_method can be any model from the sklearn library that implements the fit and predict methods. The user may also supply their own class that implements these methods. This class does no parameter tuning or cross validation. Parameter tuning is left up to the user.

Custom Estimator Methods

The user may supply their own estimators if these are not available in sklearn. This module assumes that the class passed has the fit and predict methods, i.e. the following code must work

z = np.array([[i**2 for i in range(0,10)], [i**3 for i in range(0,10)]]).transpose()
y = np.array([i for i in range(0,10)])
m = my_estimator()
m.fit(z, y)
m.predict(z)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

double_debias-0.0.4.tar.gz (3.4 kB view details)

Uploaded Source

Built Distribution

double_debias-0.0.4-py3-none-any.whl (4.5 kB view details)

Uploaded Python 3

File details

Details for the file double_debias-0.0.4.tar.gz.

File metadata

  • Download URL: double_debias-0.0.4.tar.gz
  • Upload date:
  • Size: 3.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.8.6

File hashes

Hashes for double_debias-0.0.4.tar.gz
Algorithm Hash digest
SHA256 6ae3243df0490d375eddf48753c28b250814d64237ca55c3b56ee8b33ddb1e0c
MD5 609b0c31c649df59b29e1f768afebb86
BLAKE2b-256 3c57e7b497d8f7f173bf57d322591726f399e6081d8289263af4a04146f30e16

See more details on using hashes here.

File details

Details for the file double_debias-0.0.4-py3-none-any.whl.

File metadata

  • Download URL: double_debias-0.0.4-py3-none-any.whl
  • Upload date:
  • Size: 4.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.8.6

File hashes

Hashes for double_debias-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 fc1f268e68abea9b91f26bf4acb32b1a98226928380ede365c53cbe0470dc536
MD5 4ef660cea54f536177af2ba752212485
BLAKE2b-256 5b389b632697c7666aa45352e83d1d64ca8f95ae1ce9dac5356a2bcf246a9a19

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page