Skip to main content

Manipulating data formats of DeePMD-kit, VASP, QE, PWmat, and LAMMPS, etc.

Project description

dpdata

DOI:10.1021/acs.jcim.5c01767 conda-forge pip install Documentation Status

dpdata is a Python package for manipulating atomistic data of software in computational science.

Credits

If you use this software, please cite the following paper:

  • Jinzhe Zeng, Xingliang Peng, Yong-Bin Zhuang, Haidi Wang, Fengbo Yuan, Duo Zhang, Renxi Liu, Yingze Wang, Ping Tuo, Yuzhi Zhang, Yixiao Chen, Yifan Li, Cao Thang Nguyen, Jiameng Huang, Anyang Peng, Marián Rynik, Wei-Hong Xu, Zezhong Zhang, Xu-Yuan Zhou, Tao Chen, Jiahao Fan, Wanrun Jiang, Bowen Li, Denan Li, Haoxi Li, Wenshuo Liang, Ruihao Liao, Liping Liu, Chenxing Luo, Logan Ward, Kaiwei Wan, Junjie Wang, Pan Xiang, Chengqian Zhang, Jinchao Zhang, Rui Zhou, Jia-Xin Zhu, Linfeng Zhang, Han Wang, dpdata: A Scalable Python Toolkit for Atomistic Machine Learning Data Sets, J. Chem. Inf. Model., 2025, DOI: 10.1021/acs.jcim.5c01767. Citations

Installation

dpdata only supports Python 3.8 and above. You can setup a conda/pip environment, and then use one of the following methods to install dpdata:

  • Install via pip: pip install dpdata
  • Install via conda: conda install -c conda-forge dpdata
  • Install from source code: git clone https://github.com/deepmodeling/dpdata && pip install ./dpdata

To test if the installation is successful, you may execute

dpdata --version

Supported packages

dpdata is aimmed to support different kinds of atomistic packages:

  • Atomistic machine learning packages, such as DeePMD-kit;
  • Molecular dynamics packages, such as LAMMPS and GROMACS;
  • Quantum chemistry packages, such as VASP, Gaussian, and ABACUS;
  • Atomistic visualization packages, such as 3Dmol.js.
  • Other atomistic tools, such as ASE.
  • Common formats such as xyz.

All supported formats are listed here.

Quick start

The quickest way to convert a simple file from one format to another one is to use the command line.

dpdata OUTCAR -i vasp/outcar -o deepmd/npy -O deepmd_data

For advanced usage with Python APIs, read dpdata documentation.

Plugins

  • cp2kdata adds the latest CP2K support for dpdata.

For how to create your own plugin packages, read dpdata documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dpdata-1.0.0.tar.gz (139.9 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

dpdata-1.0.0-py3-none-any.whl (165.4 kB view details)

Uploaded Python 3

File details

Details for the file dpdata-1.0.0.tar.gz.

File metadata

  • Download URL: dpdata-1.0.0.tar.gz
  • Upload date:
  • Size: 139.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.9.24

File hashes

Hashes for dpdata-1.0.0.tar.gz
Algorithm Hash digest
SHA256 474da4d20130a85c19274a10efd45446bbf3c844d6fc06e9377298c3e52cbc78
MD5 00fe3204034ec8648a8cc17fc18b0931
BLAKE2b-256 6e4b00f60191070d17ef744f92a9d0dd8bd15ad8c76ab5ac4c76ed83b5e80663

See more details on using hashes here.

File details

Details for the file dpdata-1.0.0-py3-none-any.whl.

File metadata

  • Download URL: dpdata-1.0.0-py3-none-any.whl
  • Upload date:
  • Size: 165.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.9.24

File hashes

Hashes for dpdata-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 dfd6ea2b8d885af015dd4f03dd85bcff5d4647ff993d05a8447557b0a45ebf46
MD5 f37ce860acf4e1752efe091882f46ed5
BLAKE2b-256 448a38de507bf8e6f36387061aff2768b26ee5b2ea7bb9bfae53d489a2e40ee5

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page