Skip to main content

An end-to-end single-cell multimodal analysis model with deep parameter inference.

Project description

Modeling and analyzing single-cell multimodal data with deep parametric inference

The proliferation of single-cell multimodal sequencing technologies has enabled us to understand cellular heterogeneity with multiple views, providing novel and actionable biological insights into the disease-driving mechanisms. Here, we propose a comprehensive end-to-end single-cell multimodal data analysis framework named Deep Parametric Inference (DPI). The python packages, datasets and user-friendly manuals of DPI are freely available at https://github.com/studentiz/dpi.

The dpi framework works with scanpy and supports the following single-cell multimodal analyses

  • Multimodal data integration
  • Multimodal data noise reduction
  • Cell clustering and visualization
  • Reference and query cell types
  • Cell state vector field visualization

Pip install

pip install dpi-sc

Datasets

The dataset participating in "Single-cell multimodal modeling with deep parametric inference" can be downloaded at DPI data warehouse

Tutorial

We use pbmc1k data set to demonstrate the process of DPI analysis of single cell multimodal data.

Import dependencies

import scanpy as sc
import dpi

Retina image output (optional)

%matplotlib inline
%config InlineBackend.figure_format = 'retina'

Load dataset

# The dataset can be downloaded from [Datasets] above.
sc_data = sc.read_h5ad("PBMC_COVID19_Healthy_Annotated.h5ad")

Set marker collection

rna_markers = ["CCR7", "CD19", "CD3E", "CD4"]
protein_markers = ["AB_CCR7", "AB_CD19", "AB_CD3", "AB_CD4"]

Preprocessing

dpi.preprocessing(sc_data)
dpi.normalize(sc_data, protein_expression_obsm_key="protein_expression")
sc_data.var_names_make_unique()
sc.pp.highly_variable_genes(
    sc_data,
    n_top_genes=3000,
    flavor="seurat_v3",
    subset=False
)
dpi.add_genes(sc_data, rna_markers)
sc_data = sc_data[:,sc_data.var["highly_variable"]]
dpi.scale(sc_data)

Prepare and run DPI model

Configure DPI model parameters

dpi.build_mix_model(sc_data, net_dim_rna_list=[512, 128], net_dim_pro_list=[128], net_dim_rna_mean=128, net_dim_pro_mean=128, net_dim_mix=128, lr=0.0001)

Run DPI model

dpi.fit(sc_data)

Visualize the loss

dpi.loss_plot(sc_data)

Save DPI model (optional)

dpi.saveobj2file(sc_data, "COVID19PBMC_healthy.dpi")
#sc_data = dpi.loadobj("COVID19PBMC_healthy.dpi")

Visualize the latent space

Extract latent spaces

dpi.get_spaces(sc_data)

Visualize the spaces

dpi.space_plot(sc_data, "mm_parameter_space", color="green", kde=True, bins=30)
dpi.space_plot(sc_data, "rna_latent_space", color="orange", kde=True, bins=30)
dpi.space_plot(sc_data, "pro_latent_space", color="blue", kde=True, bins=30)

Preparation for downstream analysis

Extract features

dpi.get_features(sc_data)

Get denoised datas

dpi.get_denoised_rna(sc_data)
dpi.get_denoised_pro(sc_data)

Cell clustering and visualization

Cell clustering

sc.pp.neighbors(sc_data, use_rep="mix_features")
dpi.umap_run(sc_data, min_dist=0.4)
sc.tl.leiden(sc_data)

Cell cluster visualization

sc.pl.umap(sc_data, color="leiden")

Observe multimodal data markers

RNA markers

dpi.umap_plot(sc_data, featuretype="rna", color=rna_markers, ncols=2)
dpi.umap_plot(sc_data, featuretype="rna", color=rna_markers, ncols=2, layer="rna_denoised")

Protein markers

dpi.umap_plot(sc_data, featuretype="protein", color=protein_markers, ncols=2)
dpi.umap_plot(sc_data, featuretype="protein", color=protein_markers, ncols=2, layer="pro_denoised")

Reference and query

Reference objects need to be pre-set with cell labels.

sc.pl.umap(sc_data, color="initial_clustering", frameon=False, title="PBMC COVID19 Healthy labels")

Demonstrate reference and query capabilities with unannotated asymptomatic COVID-19 PBMCs.

# The dataset can be downloaded from [Datasets] above.
filepath = "/home/hh/bigdata/hh/DPI/COVID-19/COVID19_Asymptomatic.h5ad"
sc_data_COVID19_Asymptomatic = sc.read_h5ad(filepath)

Unannotated data also needs to be normalized.

dpi.normalize(sc_data_COVID19_Asymptomatic, protein_expression_obsm_key="protein_expression")

Referenced and queried objects require alignment features.

sc_data_COVID19_Asymptomatic = sc_data_COVID19_Asymptomatic[:,sc_data.var.index]

Unannotated objects need to be normalized again with pretrained objects.

sc_data_COVID19_Asymptomatic.obsm["rna_nor"] = sc_data.mm_rna.transform(sc_data_COVID19_Asymptomatic.X).astype("float16")
sc_data_COVID19_Asymptomatic.obsm["pro_nor"] = sc_data.mm_pro.transform(sc_data_COVID19_Asymptomatic.obsm["pro_nor"]).astype("float16")

Run the automated annotation function.

dpi.annotate(sc_data, ref_labelname="initial_clustering", sc_data_COVID19_Asymptomatic)

Visualize the annotated object.

sc.pl.umap(sc_data_COVID19_Asymptomatic, color="labels", frameon=False, title="PBMC COVID19 Asymptomatic Annotated")

Cell state vector field

Simulates the cellular state when the CCR7 protein is amplified 2-fold.

dpi.cell_state_vector_field(sc_data, feature="AB_CCR7", amplitude=2, obs="initial_clustering", featuretype="protein")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dpi-sc-1.1.7.tar.gz (16.5 kB view details)

Uploaded Source

Built Distribution

dpi_sc-1.1.7-py3-none-any.whl (22.2 kB view details)

Uploaded Python 3

File details

Details for the file dpi-sc-1.1.7.tar.gz.

File metadata

  • Download URL: dpi-sc-1.1.7.tar.gz
  • Upload date:
  • Size: 16.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.12

File hashes

Hashes for dpi-sc-1.1.7.tar.gz
Algorithm Hash digest
SHA256 6172b8f5af3ab52f9760f716c38eb930be045bfd65f3f8faa26b44c1c931c1a0
MD5 051c0bf06c112048c1630da53b7ed834
BLAKE2b-256 ac568c94020ab8003ac902170da9d977595fe003d1dd41677ccb6685f26b5f63

See more details on using hashes here.

File details

Details for the file dpi_sc-1.1.7-py3-none-any.whl.

File metadata

  • Download URL: dpi_sc-1.1.7-py3-none-any.whl
  • Upload date:
  • Size: 22.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.12

File hashes

Hashes for dpi_sc-1.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 6ecbcccfd1bc00ed5e9b72e497fc5af0c6b0e9008d7c186fff6d496ae87b2185
MD5 db002ef981664eb16b977fc83211314f
BLAKE2b-256 d76cb85cec3eecfb40059c62cb1cac9068758108b3b3fe3ab29106e324b94f7b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page