Skip to main content

Data Parallel Extension for NumPy

Project description

Code style: black Imports: isort Pre-commit Conda package Coverage Status Build Sphinx OpenSSF Scorecard

oneAPI logo

DPNP - Data Parallel Extension for NumPy*

Data Parallel Extension for NumPy* or dpnp is a Python library that implements a subset of NumPy* that can be executed on any data parallel device. The subset is a drop-in replacement of core NumPy* functions and numerical data types.

API coverage summary

Full documentation

Dpnp is the core part of a larger family of data-parallel Python libraries and tools to program on XPUs.

Installing

You can install the library using conda, mamba or pip package managers. It is also available as part of the Intel(R) Distribution for Python (IDP).

Intel(R) Distribution for Python

You can find the most recent release of dpnp every quarter as part of the IDP releases.

To get the library from the latest release, follow the instructions from Get Started With Intel® Distribution for Python.

Conda

To install dpnp from the Intel(R) conda channel, use the following command:

conda install dpnp -c https://software.repos.intel.com/python/conda/ -c conda-forge --override-channels

Pip

The dpnp can be installed using pip obtaining wheel packages either from PyPi or from Intel(R) channel. To install dpnp wheel package from Intel(R) channel, run the following command:

python -m pip install --index-url https://software.repos.intel.com/python/pypi dpnp

Installing the bleeding edge

To try out the latest features, install dpnp using our development channel on Anaconda cloud:

conda install dpnp -c dppy/label/dev -c https://software.repos.intel.com/python/conda/ -c conda-forge --override-channels

Building

Refer to our Documentation for more information on setting up a development environment and building dpnp from the source.

Running Tests

Tests are located in folder dpnp/tests.

To run the tests, use:

python -m pytest --pyargs dpnp

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

dpnp-0.19.1-1-cp314-cp314-win_amd64.whl (4.8 MB view details)

Uploaded CPython 3.14Windows x86-64

dpnp-0.19.1-1-cp314-cp314-manylinux_2_28_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.28+ x86-64

dpnp-0.19.1-1-cp313-cp313-win_amd64.whl (4.8 MB view details)

Uploaded CPython 3.13Windows x86-64

dpnp-0.19.1-1-cp313-cp313-manylinux_2_28_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.28+ x86-64

dpnp-0.19.1-1-cp312-cp312-win_amd64.whl (4.8 MB view details)

Uploaded CPython 3.12Windows x86-64

dpnp-0.19.1-1-cp312-cp312-manylinux_2_28_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.28+ x86-64

dpnp-0.19.1-1-cp311-cp311-win_amd64.whl (4.8 MB view details)

Uploaded CPython 3.11Windows x86-64

dpnp-0.19.1-1-cp311-cp311-manylinux_2_28_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ x86-64

dpnp-0.19.1-1-cp310-cp310-win_amd64.whl (4.8 MB view details)

Uploaded CPython 3.10Windows x86-64

dpnp-0.19.1-1-cp310-cp310-manylinux_2_28_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ x86-64

File details

Details for the file dpnp-0.19.1-1-cp314-cp314-win_amd64.whl.

File metadata

  • Download URL: dpnp-0.19.1-1-cp314-cp314-win_amd64.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.14, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.10.14

File hashes

Hashes for dpnp-0.19.1-1-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 94c6c456d21d3dc0b542acf4fd5f8dbc106cdb464bbdbaf239a6a234bd30a4dd
MD5 c38c90e43119f960ff6f049b102ffab7
BLAKE2b-256 ee82684abfa99e791520c4d74d71a336b1264625db62cba8041e33c511ba200f

See more details on using hashes here.

File details

Details for the file dpnp-0.19.1-1-cp314-cp314-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for dpnp-0.19.1-1-cp314-cp314-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ed2cd30a1b6a1ae99b5feef2ab84de88910cf43a62e287556a840482c3cf848e
MD5 aab39b7f3d1095a82dced464338a4140
BLAKE2b-256 f04eab532985f0fbc849456a6e86a0166578b1bc7099e02a7a8b6d47f342b86a

See more details on using hashes here.

File details

Details for the file dpnp-0.19.1-1-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: dpnp-0.19.1-1-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.10.14

File hashes

Hashes for dpnp-0.19.1-1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 f58b21b90ec26d208c27c0ef9cda7676b079b5ed7c6cd07700886ea557ee053b
MD5 2664e6f107557dfa6977cf4aff96b458
BLAKE2b-256 a3a4d4a8074b4874b5cb9006cfd4806402c75fe9ad6fab76d70ef1c0fde64cb8

See more details on using hashes here.

File details

Details for the file dpnp-0.19.1-1-cp313-cp313-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for dpnp-0.19.1-1-cp313-cp313-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 69e57e0a707617ff337e6f6bae5f39be761404d77354e70fb56abb75deb775e7
MD5 edfbad49ae112a6d290fd02b47d0bad2
BLAKE2b-256 8ad5bec9b18fcbf561c4747aba7920af42f6469d0ee1f7d83dd88cd1b34b998b

See more details on using hashes here.

File details

Details for the file dpnp-0.19.1-1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: dpnp-0.19.1-1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.10.14

File hashes

Hashes for dpnp-0.19.1-1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 e1e60ec8c47281f3f4ff8583d76fd73c6fb10f2d04249faac2e987dc59c99873
MD5 282dfdbeaa3cd2a24db11816b842f3cd
BLAKE2b-256 3954a650ed6230f1b98665ddee540e30ed5d6fed28fab015ec0d31164d95121b

See more details on using hashes here.

File details

Details for the file dpnp-0.19.1-1-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for dpnp-0.19.1-1-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ded7d90a0f2db26e4af257b13b6bc3be2671f1dd06a604c4963b8033a1dbd53c
MD5 964fb00531528f2ac6f08f90b7065293
BLAKE2b-256 ae4438ba12b7f9df768fff63ac4234710593fbdc36961b5c6fe0bc5929e899b0

See more details on using hashes here.

File details

Details for the file dpnp-0.19.1-1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: dpnp-0.19.1-1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.10.14

File hashes

Hashes for dpnp-0.19.1-1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 cd8fcaed5f0226ee6fffa65a14d246b2865c8be762ed5e344038bac69fedb4fb
MD5 d0cab58cf3be3cecef613702d93b0944
BLAKE2b-256 28dc53b053f54244dfebec3e020c4e9f4ea972b227a51586142c350676bb9bdb

See more details on using hashes here.

File details

Details for the file dpnp-0.19.1-1-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for dpnp-0.19.1-1-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 d385a2067e8df9bc8b4eceab6976050891301fb9cc4d50b4838b3447dbf70e5a
MD5 702ec2b08b14ce9c152f48b70a80ebb5
BLAKE2b-256 07bf39f69849521fdb1c2ee225bd58fd56d9fd31f6a8c43ddc5649788ed714c7

See more details on using hashes here.

File details

Details for the file dpnp-0.19.1-1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: dpnp-0.19.1-1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.10.14

File hashes

Hashes for dpnp-0.19.1-1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 605bc26f349a5c3e1864b49c254ef58e9b78898b172e3fb1cecbec68a9339d07
MD5 321e9dcb65960a27691545f7d5284d18
BLAKE2b-256 ff398ef0bff8f6223b690d8adcb69298aaf34293984f200d6bf8f7af47e4ce3b

See more details on using hashes here.

File details

Details for the file dpnp-0.19.1-1-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for dpnp-0.19.1-1-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 7777cdd4ee154259eff6c1572769d7d398b714a79f89374f931859619bfbc90f
MD5 703aa9196d9803b39bb8b123c0dc1d53
BLAKE2b-256 0ded3e9ae9a2942af8d46692c5180bb46de3532ec20173bf822e8432cb88f349

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page