Skip to main content

Preprocessing scripts for the DRAGON benchmark

Project description

DRAGON Preprocessing

This repository contains the preprocessing scripts for the DRAGON challenge.

If you are using this codebase or some part of it, please cite the following article: PENDING

BibTeX:

PENDING

Installation

dragon_prep can be pip-installed:

pip install dragon_prep

Alternatively, it can be installed from source:

git clone https://github.com/DIAGNijmegen/dragon_prep
cd dragon_prep
pip install -e .

The Docker can be built after cloning the repository. The anonymisation code is not included due to privacy concerns, so you have to uncomment copying and installing the diag-radiology-report-anonymizer. The unmodified version is included to reflect the exact code used to prepare the DRAGON challenge resources.

git clone https://github.com/DIAGNijmegen/dragon_prep
cd dragon_prep
nano Dockerfile  # uncomment copying and installing the diag-radiology-report-anonymizer
./build.sh

If ran successfully, this results in the Docker container named dragon_prep:latest.

Resources

The preprocessing scripts for the synthetic datasets can be found in src/dragon_prep and are the script called Task1xx_Example_yy.py. The preprocessing scripts for the datasets used in the test leaderboard for the DRAGON challenge can be found in src/dragon_prep and are the script called Task0xx_yy.py. The datasets for the validation leaderboard are derived from the development data, using the src/dragon_prep/make_debug_splits.py script. For the DRAGON challenge, all datasets were preprocessed using the preprocess.sh script.

Usage

The synthetic datasets can be generated with any number of samples.

After installing the dragon_prep module:

python src/dragon_prep/Task101_Example_sl_bin_clf.py \
    --output_dir=./output \
    --num_examples={set any number you like}

Or, using the Docker container:

docker run --rm -it \
    -v /path/to/store/data:/output \
    dragon_prep:latest python /opt/app/dragon_prep/src/dragon_prep/Task101_Example_sl_bin_clf.py \
        --num_examples={set any number you like}


# ... same for Task102_Example_sl_mc_clf.py, Task104_Example_ml_bin_clf.py, Task105_Example_ml_mc_clf.py, Task106_Example_sl_reg.py, Task107_Example_ml_reg.py, Task108_Example_sl_ner.py, Task109_Example_ml_ner.py
# for Task103_Example_mednli.py, setting the number of examples is not supported

The preprocessing scripts for the tasks in the DRAGON benchmark are included for transparancy and to provide building blocks to process your own data. To run the end-to-end script using your own data, you can turn off the anonymisation functionality:

prepare_for_anon(df=df, output_dir=output_dir, task_name=task_name, tag_phi=False, apply_hips=False)

Managed By

Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands

Contact Information

Joeran Bosma: Joeran.Bosma@radboudumc.nl

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dragon_prep-0.2.1.tar.gz (53.4 kB view details)

Uploaded Source

Built Distribution

dragon_prep-0.2.1-py3-none-any.whl (111.5 kB view details)

Uploaded Python 3

File details

Details for the file dragon_prep-0.2.1.tar.gz.

File metadata

  • Download URL: dragon_prep-0.2.1.tar.gz
  • Upload date:
  • Size: 53.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.14

File hashes

Hashes for dragon_prep-0.2.1.tar.gz
Algorithm Hash digest
SHA256 df69932defc981a04c73843bb850f0e9851417ca7c25727e56c4afd83fade332
MD5 d10cd47ffd702186c06850135fc4d8eb
BLAKE2b-256 dd3736c039cefb86fff56ee56f0243bca68691287e18e8342fcb064b8e4f2f47

See more details on using hashes here.

File details

Details for the file dragon_prep-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: dragon_prep-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 111.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.14

File hashes

Hashes for dragon_prep-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 3a25129d81ed19a6054747f742e97f0fbfcd71a973ead59a509d0b81030c638e
MD5 cc0f030b2f04b08b661c1de44f3cd62d
BLAKE2b-256 583d8ef079972cb36c8016357a1f5a43af2d4ba8137ea04b4be694bb17cb65c2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page