Skip to main content

Model-based design and verification for robotics

Project description

Drake (“dragon” in Middle English) is a toolbox started by the Robot Locomotion Group at the MIT Computer Science and Artificial Intelligence Lab (CSAIL). The development team has now grown significantly, with core development led by the Toyota Research Institute. It is a collection of tools for analyzing the dynamics of our robots and building control systems for them, with a heavy emphasis on optimization-based design/analysis.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

drake-1.1.0-cp39-cp39-manylinux_2_31_x86_64.whl (86.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.31+ x86-64

drake-1.1.0-cp38-cp38-manylinux_2_27_x86_64.whl (85.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.27+ x86-64

drake-1.1.0-cp37-cp37m-manylinux_2_27_x86_64.whl (89.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.27+ x86-64

drake-1.1.0-cp36-cp36m-manylinux_2_27_x86_64.whl (89.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.27+ x86-64

File details

Details for the file drake-1.1.0-cp39-cp39-manylinux_2_31_x86_64.whl.

File metadata

  • Download URL: drake-1.1.0-cp39-cp39-manylinux_2_31_x86_64.whl
  • Upload date:
  • Size: 86.4 MB
  • Tags: CPython 3.9, manylinux: glibc 2.31+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.10

File hashes

Hashes for drake-1.1.0-cp39-cp39-manylinux_2_31_x86_64.whl
Algorithm Hash digest
SHA256 b9631c64530b9c549ffcea7a958aae4c8cbcf43049a0be77ec3fd08861b33a54
MD5 4dbf53034f28c375f9aa853e0f2ed02c
BLAKE2b-256 c378ffe59a2cf255f9d956c2fa99e2c653f5574dbb055f8a4ce2a3bd4ac7accd

See more details on using hashes here.

File details

Details for the file drake-1.1.0-cp38-cp38-manylinux_2_27_x86_64.whl.

File metadata

  • Download URL: drake-1.1.0-cp38-cp38-manylinux_2_27_x86_64.whl
  • Upload date:
  • Size: 85.3 MB
  • Tags: CPython 3.8, manylinux: glibc 2.27+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.10

File hashes

Hashes for drake-1.1.0-cp38-cp38-manylinux_2_27_x86_64.whl
Algorithm Hash digest
SHA256 c6a5550da4bfc3551bc3edca58d1231eb3443e7351ce9c57b014cfb812903d31
MD5 9494dbc87f0a9c05a7ce6b83b7df644e
BLAKE2b-256 9e453f36693a459d07e259e1b944daa59e24bf1ff0c4ffcf83f9d80675a5c955

See more details on using hashes here.

File details

Details for the file drake-1.1.0-cp37-cp37m-manylinux_2_27_x86_64.whl.

File metadata

  • Download URL: drake-1.1.0-cp37-cp37m-manylinux_2_27_x86_64.whl
  • Upload date:
  • Size: 89.9 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.27+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.10

File hashes

Hashes for drake-1.1.0-cp37-cp37m-manylinux_2_27_x86_64.whl
Algorithm Hash digest
SHA256 5bde53a3e392cbcfca271634b540457d9b5ab9e9956f9c376317b16d1bf4d0e6
MD5 8f6708d6e62d4bd97fe9b4fddea5224a
BLAKE2b-256 368c25425bcf65a3a62c397d9f34f58078acdcbf43a5e16fd3cd8e7a26819078

See more details on using hashes here.

File details

Details for the file drake-1.1.0-cp36-cp36m-manylinux_2_27_x86_64.whl.

File metadata

  • Download URL: drake-1.1.0-cp36-cp36m-manylinux_2_27_x86_64.whl
  • Upload date:
  • Size: 89.5 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.27+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.10

File hashes

Hashes for drake-1.1.0-cp36-cp36m-manylinux_2_27_x86_64.whl
Algorithm Hash digest
SHA256 dfe40afb95375f3ca93617e6d94f5b68126f78ef3b99ecc49386d0373a989ce9
MD5 ea64f28d8a4a6c853ebba52a7070056d
BLAKE2b-256 1dfb9be53b764533440bcc1f1deace426f8cf2c9e00c1b8939745627cb0e6ca0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page