Ancestral sequence reconstruction using a tree structured Ornstein Uhlenbeck variational autoencoder
Reason this release was yanked:
old version
Project description
DRAUPNIR: "Beta library version for performing ASR using a tree-structured Variational Autoencoder"
##Extra requirements for tree inference:
IQ-Tree: http://www.iqtree.org/doc/Quickstart
conda install -c bioconda iqtree
RapidNJ: https://birc.au.dk/software/rapidnj
conda config --add channels bioconda
conda install rapidnj
#Extra requirements for fast patristic matrix construction
Install R (R version 4.1.2 (2021-11-01) -- "Bird Hippie" )
sudo apt update & sudo apt upgrade
sudo apt -y install r-base
together with ape 5.5 and TreeDist 2.3 libraries
install.packages(c("ape","TreeDist"))
#Draupnir Install
pip install draupnir
#Example: See Draupnir_example.py
import pyro
import torch
import draupnir
import argparse
import os
script_dir = os.path.dirname(os.path.abspath(__file__))
pyro.enable_validation(False)
use_cuda=True
if use_cuda:
torch.set_default_tensor_type(torch.cuda.DoubleTensor)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
else:
torch.set_default_tensor_type(torch.DoubleTensor)
device = "cpu"
draupnir.available_datasets(print_dict=True)
build_config,settings_config, root_sequence_name = draupnir.create_draupnir_dataset("simulations_blactamase_1", #default dataset
use_custom=False, #default dataset
script_dir=script_dir,
build=False, # True: construct the dataset, False: use the stored dataset
fasta_file=None, # in this case, it will be read from /draupnir/src/data
tree_file=None, #in this case, it will be read from /draupnir/src/data
alignment_file=None) #in this case, #it will be read from /draupnir/src/data
#draupnir.draw_tree_simple(args.dataset_name,settings_config) # to draw a tree, only after the dataset has been built
draupnir.run(args.dataset_name,root_sequence_name,args,device,settings_config,build_config,script_dir)
#How long should I run my model?
- While it is training:
- Check for the Percent_ID.png plot, if the training accuracy has peaked to almost 100%, run for at least ~1000 epochs more to guarantee full learning
- Check for stabilization of the error loss: ELBO_error.png
- Check for stabilization of the entropy: Entropy_convergence.png
- After training:
- Observe the latent space:
- t_SNE, UMAP and PCA plots: Is it organized by clades? Although, not every data set will present tight clustering of the tree clades though but there should be some organization
- Distances_GP_VAE_z_vs_branch_lengths_Pairwise_distance_INTERNAL_and_LEAVES plot: Is there a positive correlation? If there is not a good correlation but the train percent identity is high, it will still be a valid run
- Observe the sampled training (leaves) sequences and test (internal) sequences: Navigate to the Train_argmax and Test_argmax folders and look for the .fasta files
- Calculate mutual information:
- First: Run Draupnir with the MAP & Marginal version and Variational version, or just the Variational
- Second: Use the draupnir.calculate_mutual_information() with the paths to the folders with the trained runs.
- Observe the latent space:
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file draupnir-0.0.21.tar.gz
.
File metadata
- Download URL: draupnir-0.0.21.tar.gz
- Upload date:
- Size: 3.6 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | afcbbc97fbf9b2c79fbe7d55e4e4e3d4a21a47c5ddf0b167a5742eefd8837e63 |
|
MD5 | dbe93c389aec4b5e8b02b94ff4e0189c |
|
BLAKE2b-256 | 0739d91393ed2c7f561f66241cc7e6ae5c0016b55c7b88b329fd7e55ca3cab1b |
File details
Details for the file draupnir-0.0.21-py3-none-any.whl
.
File metadata
- Download URL: draupnir-0.0.21-py3-none-any.whl
- Upload date:
- Size: 4.0 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e33ab86c469548371da16669e245826f66b1d00bd9f3371fa2701c752323cb4c |
|
MD5 | 4cf9a4d10d733720650cb0dc3a869044 |
|
BLAKE2b-256 | fcaa1a85f077e66bc2c8a4fbb8145a67d42fb148e5ccb1a3f591c6e35c3adf36 |