No project description provided
Project description
StableDiffusionInpaintingFineTune
This project provides a toolkit for fine-tuning the Stable Diffusion model for inpainting tasks (image restoration based on a mask) using PyTorch and Hugging Face Diffusers libraries.
Requirements
Before starting, you need to install the following libraries:
torch
diffusers
transformers
accelerate
huggingface_hub
PIL
numpy
tqdm
Description
StableDiffusionInpaintingFineTune
This class is responsible for fine-tuning the Stable Diffusion model for the inpainting task. It supports training both the text encoder and the UNet model and uses various settings to control the training process.
Constructor
^^^^^^^^^^^
.. code-block:: python
__init__(self, pretrained_model_name_or_path, resolution, center_crop, ...)
- **pretrained_model_name_or_path**: The path or name of the pre-trained model.
- **resolution**: The resolution of the images.
- **center_crop**: Whether to apply center cropping during data preparation.
- **train_text_encoder**: Whether to train the text encoder.
- **dataset**: The dataset object.
- **learning_rate**: The initial learning rate.
- **max_training_steps**: The maximum number of training steps.
- **save_steps**: The number of steps between saving checkpoints.
- **train_batch_size**: The batch size.
- **gradient_accumulation_steps**: The number of steps to accumulate gradients.
- **mixed_precision**: Use of mixed precision ("fp16", "bf16", or None).
- **gradient_checkpointing**: Use of gradient checkpointing.
- **use_8bit_adam**: Use of the 8-bit Adam optimizer.
- **seed**: The random seed for reproducibility.
- **output_dir**: The directory for saving results.
- **push_to_hub**: Whether to upload the results to the Hugging Face Hub.
- **repo_id**: The repository ID on Hugging Face Hub.
Methods
^^^^^^^
- **prepare_mask_and_masked_image(image, mask)**: Prepares the mask and masked image.
- **random_mask(im_shape, ratio=1, mask_full_image=False)**: Generates a random mask.
- **load_args_for_training()**: Loads the necessary components of the model for training.
- **collate_fn(examples)**: Forms a batch of data for the model.
- **__call__(self, *args, **kwargs)**: The main method for running the training process.
Usage
-----
To start training, you should create an instance of the ``StableDiffusionInpaintingFineTune`` class and call its ``__call__`` method, passing the necessary arguments.
.. code-block:: python
model = StableDiffusionInpaintingFineTune(
pretrained_model_name_or_path="path_to_model",
resolution=512,
center_crop=True,
...
)
model()
License
-------
The project is distributed under the MIT License.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
dreamfinetune-0.4.2.tar.gz
(16.2 kB
view hashes)
Built Distribution
Close
Hashes for dreamfinetune-0.4.2-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | dfd57fe37b0a8e1de1f5a8ba1dffad1a1a2159ee1edc8a11636b19ad3ff23082 |
|
MD5 | 7b4f48eb178ce46a7a4c543398c42f01 |
|
BLAKE2b-256 | 79cdc1770f6d8554a3b7ea0f979ad68056d81dcf4f03f5109ce6a2d2cf1913c3 |