Skip to main content

DreamSim similarity metric

Project description

DreamSim: Learning New Dimensions of Human Visual Similarity using Synthetic Data

Project Page | Paper | Bibtex

Open In Colab

Stephanie Fu* $^{1}$, Netanel Tamir* $^{2}$, Shobhita Sundaram* $^{1}$, Lucy Chai $^1$, Richard Zhang $^3$, Tali Dekel $^2$, Phillip Isola $^1$. (*equal contribution)
$^1$ MIT, $^2$ Weizmann Institute of Science, $^3$ Adobe Research.

Summary

Current metrics for perceptual image similarity operate at the level of pixels and patches. These metrics compare images in terms of their low-level colors and textures, but fail to capture mid-level differences in layout, pose, semantic content, etc. Models that use image-level embeddings such as DINO and CLIP capture high-level and semantic judgements, but may not be aligned with human perception of more finegrained attributes.

DreamSim is a new metric for perceptual image similarity that bridges the gap between "low-level" metrics (e.g. LPIPS, PSNR, SSIM) and "high-level" measures (e.g. CLIP). Our model was trained by concatenating CLIP, OpenCLIP, and DINO embeddings, and then finetuning on human perceptual judgements. We gathered these judgements on a dataset of ~20k image triplets, generated by diffusion models. Our model achieves better alignment with human similarity judgements than existing metrics, and can be used for downstream applications such as image retrieval.

Requirements

  • Linux
  • Python 3
  • NVIDIA GPU + CUDA CuDNN (DreamSim is only supported on CUDA devices)

Setup

Option 1: Install using pip:

pip install dreamsim

The package is used for importing and using the DreamSim model.

Option 2: Clone our repo and install dependencies. This is necessary for running our training/evaluation scripts.

python3 -m venv ds
source ds/bin/activate
pip install -r requirements.txt
export PYTHONPATH="$PYTHONPATH:$(realpath ./dreamsim)"

To install with conda:

conda create -n ds
conda activate ds
conda install pip # verify with the `which pip` command
pip install -r requirements.txt
export PYTHONPATH="$PYTHONPATH:$(realpath ./dreamsim)"

Usage

For walk-through examples of the below use-cases, check out our Colab demo.

Quickstart: Perceptual similarity metric

The basic use case is to measure the perceptual distance between two images. A higher score means more different, lower means more similar.

The following code snippet is all you need. The first time that you run dreamsim it will automatically download the model weights. The default model settings are specified in ./dreamsim/config.py.

from dreamsim import dreamsim
from PIL import Image

model, preprocess = dreamsim(pretrained=True)

img1 = preprocess(Image.open("img1_path")).to("cuda")
img2 = preprocess(Image.open("img2_path")).to("cuda")
distance = model(img1, img2) # The model takes an RGB image from [0, 1], size batch_sizex3x224x224

To run on example images, run demo.py. The script should produce distances (0.424, 0.34).

(new!) Single-branch models

By default, DreamSim uses an ensemble of CLIP, DINO, and OpenCLIP (all ViT-B/16). If you need a lighter-weight model you can use single-branch versions of DreamSim where only a single backbone is finetuned. The available options are OpenCLIP-ViTB/32, DINO-ViTB/16, CLIP-ViTB/32, in order of performance.

To load a single-branch model, use the dreamsim_type argument. For example:

dreamsim_dino_model, preprocess = dreamsim(pretrained=True, dreamsim_type="dino_vitb16")

Feature extraction

To extract a single image embedding using dreamsim, use the embed method as shown in the following snippet:

img1 = preprocess(Image.open("img1_path")).to("cuda")
embedding = model.embed(img1)

The perceptual distance between two images is the cosine distance between their embeddings. If the embeddings are normalized (true by default) L2 distance can also be used.

Image retrieval

Our model can be used for image retrieval, and plugged into existing such pipelines. The code below ranks a dataset of images based on their similarity to a given query image.

To speed things up, instead of directly calling model(query, image) for each pair, we use the model.embed(image) method to pre-compute single-image embeddings, and then take the cosine distance between embedding pairs.

import pandas as pd
from tqdm import tqdm
import torch.nn.functional as F

# let query be a sample image.
# let images be a list of images we are searching.

# Compute the query image embedding
query_embed = model.embed(preprocess(query).to("cuda"))
dists = {}

# Compute the (cosine) distance between the query and each search image
for i, im in tqdm(enumerate(images), total=len(images)):
   img_embed = model.embed(preprocess(im).to("cuda"))
   dists[i] = (1 - F.cosine_similarity(query_embed, img_embed, dim=-1)).item()

# Return results sorted by distance
df = pd.DataFrame({"ids": list(dists.keys()), "dists": list(dists.values())})
return df.sort_values(by="dists")

Perceptual loss function

Our model can be used as a loss function for iterative optimization (similarly to the LPIPS metric). These are the key lines; for the full example, refer to the Colab.

for i in range(n_iters):
    dist = model(predicted_image, reference_image)
    dist.backward()
    optimizer.step()

Citation

If you find our work or any of our materials useful, please cite our paper:

@misc{fu2023dreamsim,
      title={DreamSim: Learning New Dimensions of Human Visual Similarity using Synthetic Data}, 
      author={Stephanie Fu and Netanel Tamir and Shobhita Sundaram and Lucy Chai and Richard Zhang and Tali Dekel and Phillip Isola},
      year={2023},
      eprint={2306.09344},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledgements

Our code borrows from the "Deep ViT Features as Dense Visual Descriptors" repository for ViT feature extraction, and takes inspiration from the UniverSeg respository for code structure.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dreamsim-0.1.3.tar.gz (20.1 kB view hashes)

Uploaded Source

Built Distribution

dreamsim-0.1.3-py3-none-any.whl (19.9 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page