Skip to main content

Dria SDK - A Python library for interacting with the Dria AI Network

Project description

Dria-SDK

Dria SDK is a powerful SDK for building and executing AI-powered workflows and pipelines. It provides a flexible and extensible framework for creating complex AI tasks, managing distributed computing resources, and handling various AI models.

Table of Contents

  1. Installation
  2. Features
  3. Login
  4. Getting Started
  5. Usage Examples
  6. API Usage
  7. License

Installation

To install Dria SDK, you can use pip:

pip install dria

Features

  • Create and manage AI workflows and pipelines
  • Support for multiple AI models
  • Distributed task execution
  • Flexible configuration options
  • Built-in error handling and retries
  • Extensible callback system

Login

Dria SDK uses authentication token for sending tasks to the Dria Network. You should get your rpc token from Dria Login API.

Getting Started

To get started with Dria SDK, you'll need to set up your environment and initialize the Dria client:

import os
from dria.client import Dria

# Initialize the Dria client
dria = Dria(rpc_token=os.environ["DRIA_RPC_TOKEN"])

# Initialize the client (should be called before using any other methods)
await dria.initialize()

Usage Examples

Creating a Simple Workflow

Here's an example of creating a simple workflow for generating a poem:

import asyncio

from dria.client import Dria
from dria.models import Task, TaskResult
from dria.models.enums import Model
from dria.workflows.lib.poem_generator import poem

dria = Dria()

async def generate_poem(prompt: str) -> list[TaskResult]:
    task = Task(
        workflow=poem(prompt),
        models=[Model.QWEN2_5_7B_FP16]
    )
    await dria.push(task)
    return await dria.fetch(task_id=task.id)

async def main():
    
    await dria.initialize()
    result = await generate_poem("Write a poem about love")

if __name__ == "__main__":
    asyncio.run(main())

Building a Complex Pipeline

For more complex scenarios, you can use the PipelineBuilder to create multi-step pipelines:

from dria.client import Dria
from dria.models import Model, TaskInput
from dria.pipeline import PipelineConfig, StepConfig, PipelineBuilder, StepBuilder
from workflows import generate_entries, generate_subtopics


async def create_subtopic_pipeline(dria: Dria, topic, config: PipelineConfig = PipelineConfig(), max_depth=1):
    pipeline = PipelineBuilder(config, dria)
    depth = 0

    # handles single topic output
    subtopics = StepBuilder(input=TaskInput(topics=[topic]), config=StepConfig(models=[Model.QWEN2_5_7B_FP16,
                                                                                       Model.GPT4O]),
                            workflow=generate_subtopics).broadcast().build()
    pipeline.add_step(subtopics)

    while depth < max_depth:
        # handles multiple topics
        subtopics = StepBuilder(workflow=generate_subtopics,
                                config=StepConfig(models=[Model.QWEN2_5_7B_FP16, Model.GPT4O])).scatter().build()
        pipeline.add_step(subtopics)
        depth += 1

    # entry generation
    entries = StepBuilder(workflow=generate_entries, config=StepConfig(min_compute=0.8)).build()
    pipeline.add_step(entries)
    return pipeline.build()

API Usage

You can use the Dria SDK on the API level to create your own workflows and pipelines.

from fastapi import FastAPI, HTTPException, BackgroundTasks
from pydantic import BaseModel, Field
from dria.client import Dria
from dria.pipeline.pipeline import PipelineConfig, Pipeline
from pipeline import create_subtopic_pipeline

app = FastAPI(title="Dria SDK Example")
dria = Dria()


@app.on_event("startup")
async def startup_event():
    await dria.initialize()


class PipelineRequest(BaseModel):
    input_text: str = Field(..., description="The input text for the pipelines to process")


class PipelineResponse(BaseModel):
    pipeline_id: str = Field(..., description="Unique identifier for the created pipelines")


pipeline_config = PipelineConfig(retry_interval=5)
pipelines = {}


@app.post("/run_pipeline", response_model=PipelineResponse)
async def run_pipeline(request: PipelineRequest, background_tasks: BackgroundTasks):
    pipeline = await create_subtopic_pipeline(dria, request.input_text, pipeline_config)
    pipelines[pipeline.pipeline_id] = pipeline
    background_tasks.add_task(pipeline.execute)
    return PipelineResponse(pipeline_id=pipeline.pipeline_id)


@app.get("/pipeline_status/{pipeline_id}")
async def get_pipeline_status(pipeline_id: str):
    if pipeline_id not in pipelines:
        raise HTTPException(status_code=404, detail="Pipeline not found")

    pipeline = pipelines[pipeline_id]
    state, status, result = pipeline.poll()

    if result is not None:
        del pipelines[pipeline_id]

    return {"status": status, "state": state, "result": result}

# Usage example:
# uvicorn main:app --host 0.0.0.0 --port 8005

For more detailed API documentation, see on our documentation site.

License

Dria SDK is released under the MIT License.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dria-0.0.23.tar.gz (50.7 kB view details)

Uploaded Source

Built Distribution

dria-0.0.23-py3-none-any.whl (75.8 kB view details)

Uploaded Python 3

File details

Details for the file dria-0.0.23.tar.gz.

File metadata

  • Download URL: dria-0.0.23.tar.gz
  • Upload date:
  • Size: 50.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.14 Darwin/23.4.0

File hashes

Hashes for dria-0.0.23.tar.gz
Algorithm Hash digest
SHA256 70502c565eff20610faac0ff89b88c58deffd540ac12a993ba1a604f89592bff
MD5 b41d80c76e82fbc92b49bcb542b64b3a
BLAKE2b-256 c0c83576dfefc35c683d37462459daf810557333c562cfb40c11005602d9bd0e

See more details on using hashes here.

File details

Details for the file dria-0.0.23-py3-none-any.whl.

File metadata

  • Download URL: dria-0.0.23-py3-none-any.whl
  • Upload date:
  • Size: 75.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.14 Darwin/23.4.0

File hashes

Hashes for dria-0.0.23-py3-none-any.whl
Algorithm Hash digest
SHA256 d053dbadc009572c51a4ccfd587824d4bf2a115ef24dc29bcf22ef4c5b48507c
MD5 1c1f57105735f9e818033d6f98be9ddc
BLAKE2b-256 94384bb941556a5157107e7251e039b2bd764a921d269dd4963c07b3736bc830

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page