Skip to main content

Dria SDK - A Python library for interacting with the Dria AI Network

Project description

Dria-SDK

Dria SDK is a powerful SDK for building and executing AI-powered workflows and pipelines. It provides a flexible and extensible framework for creating complex AI tasks, managing distributed computing resources, and handling various AI models.

Table of Contents

  1. Installation
  2. Features
  3. Login
  4. Getting Started
  5. Usage Examples
  6. API Usage
  7. License

Installation

To install Dria SDK, you can use pip:

pip install dria

Features

  • Create and manage AI workflows and pipelines
  • Support for multiple AI models
  • Distributed task execution
  • Flexible configuration options
  • Built-in error handling and retries
  • Extensible callback system

Login

Dria SDK uses authentication token for sending tasks to the Dria Network. You should get your rpc token from Dria Login API.

Getting Started

To get started with Dria SDK, you'll need to set up your environment and initialize the Dria client:

import os
from dria.client import Dria

# Initialize the Dria client
dria = Dria(rpc_token=os.environ["DRIA_RPC_TOKEN"])

# Initialize the client (should be called before using any other methods)
await dria.initialize()

Usage Examples

Creating a Simple Workflow

Here's an example of creating a simple workflow for generating a poem:

import asyncio

from dria.client import Dria
from dria.models import Task, TaskResult
from dria.models.enums import Model
from dria.workflows.lib.poem_generator import poem

dria = Dria()

async def generate_poem(prompt: str) -> list[TaskResult]:
    task = Task(
        workflow=poem(prompt),
        models=[Model.QWEN2_5_7B_FP16]
    )
    await dria.push(task)
    return await dria.fetch(task_id=task.id)

async def main():
    
    await dria.initialize()
    result = await generate_poem("Write a poem about love")

if __name__ == "__main__":
    asyncio.run(main())

Building a Complex Pipeline

For more complex scenarios, you can use the PipelineBuilder to create multi-step pipelines:

from dria.client import Dria
from dria.models import Model, TaskInput
from dria.pipelines import PipelineConfig, StepConfig, PipelineBuilder, StepBuilder
from workflows import generate_entries, generate_subtopics


async def create_subtopic_pipeline(dria: Dria, topic, config: PipelineConfig = PipelineConfig(), max_depth=1):
    pipeline = PipelineBuilder(config, dria)
    depth = 0

    # handles single topic output
    subtopics = StepBuilder(input=TaskInput(topics=[topic]), config=StepConfig(models=[Model.QWEN2_5_7B_FP16,
                                                                                       Model.GPT4O]),
                            workflow=generate_subtopics).broadcast().build()
    pipeline.add_step(subtopics)

    while depth < max_depth:
        # handles multiple topics
        subtopics = StepBuilder(workflow=generate_subtopics,
                                config=StepConfig(models=[Model.QWEN2_5_7B_FP16, Model.GPT4O])).scatter().build()
        pipeline.add_step(subtopics)
        depth += 1

    # entry generation
    entries = StepBuilder(workflow=generate_entries, config=StepConfig(min_compute=0.8)).build()
    pipeline.add_step(entries)
    return pipeline.build()

API Usage

You can use the Dria SDK on the API level to create your own workflows and pipelines.

from fastapi import FastAPI, HTTPException, BackgroundTasks
from pydantic import BaseModel, Field
from dria.client import Dria
from dria.pipelines.pipeline import PipelineConfig, Pipeline
from pipeline import create_subtopic_pipeline

app = FastAPI(title="Dria SDK Example")
dria = Dria()

@app.on_event("startup")
async def startup_event():
    await dria.initialize()

class PipelineRequest(BaseModel):
    input_text: str = Field(..., description="The input text for the pipeline to process")

class PipelineResponse(BaseModel):
    pipeline_id: str = Field(..., description="Unique identifier for the created pipeline")

pipeline_config = PipelineConfig(retry_interval=5)
pipelines = {}

@app.post("/run_pipeline", response_model=PipelineResponse)
async def run_pipeline(request: PipelineRequest, background_tasks: BackgroundTasks):
    pipeline = await create_subtopic_pipeline(dria, request.input_text, pipeline_config)
    pipelines[pipeline.pipeline_id] = pipeline
    background_tasks.add_task(pipeline.execute)
    return PipelineResponse(pipeline_id=pipeline.pipeline_id)

@app.get("/pipeline_status/{pipeline_id}")
async def get_pipeline_status(pipeline_id: str):
    if pipeline_id not in pipelines:
        raise HTTPException(status_code=404, detail="Pipeline not found")
    
    pipeline = pipelines[pipeline_id]
    state, status, result = pipeline.poll()
    
    if result is not None:
        del pipelines[pipeline_id]
    
    return {"status": status, "state": state, "result": result}

# Usage example:
# uvicorn main:app --host 0.0.0.0 --port 8005

For more detailed API documentation, see on our documentation site.

License

Dria SDK is released under the MIT License.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dria-0.0.5.tar.gz (25.9 kB view details)

Uploaded Source

Built Distribution

dria-0.0.5-py3-none-any.whl (31.8 kB view details)

Uploaded Python 3

File details

Details for the file dria-0.0.5.tar.gz.

File metadata

  • Download URL: dria-0.0.5.tar.gz
  • Upload date:
  • Size: 25.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.11.5 Darwin/23.4.0

File hashes

Hashes for dria-0.0.5.tar.gz
Algorithm Hash digest
SHA256 b62f7def6c0823839e84b347c031bcb34f0154b47af6736ff6fba5f80d27a553
MD5 9718757314db494385ef9344845c81db
BLAKE2b-256 eeee8b9fcef7f3dd6b1ee3fec5e2d5c30d3d70bdef12f6201febff0929dfcbb7

See more details on using hashes here.

File details

Details for the file dria-0.0.5-py3-none-any.whl.

File metadata

  • Download URL: dria-0.0.5-py3-none-any.whl
  • Upload date:
  • Size: 31.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.11.5 Darwin/23.4.0

File hashes

Hashes for dria-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 2d5421fcf1bc5e0cc5b74fcdc76e2f909e4d25d94926a79c65986b0c5f13b81b
MD5 a615c80fe7e19ff755bcc35ab58ef326
BLAKE2b-256 b04287bafa3069ab9876f378e9924465ad53aee3ff561fd74f3b8d3f4d1a3642

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page