Skip to main content

Dria SDK - A Python library for interacting with the Dria Network

Project description

Dria-SDK

Dria SDK is a powerful SDK for building and executing AI-powered workflows and pipelines. It provides a flexible and extensible framework for creating complex AI tasks, managing distributed computing resources, and handling various AI models.

Table of Contents

  1. Installation
  2. Features
  3. Login
  4. Getting Started
  5. Usage Examples
  6. API Usage
  7. License

Installation

To install Dria SDK, you can use pip:

pip install dria

Features

  • Create and manage AI workflows and pipelines
  • Support for multiple AI models
  • Distributed task execution
  • Flexible configuration options
  • Built-in error handling and retries
  • Extensible callback system

Login

Dria SDK uses authentication token for sending tasks to the Dria Network. You should get your rpc token from Dria Login API.

Getting Started

To get started with Dria SDK, you'll need to set up your environment and initialize the Dria client:

import os
from dria.client import Dria

# Initialize the Dria client
dria = Dria(rpc_token=os.environ["DRIA_RPC_TOKEN"])

Usage Examples

Creating a Simple Workflow

Here's an example of creating a simple workflow for generating a poem:

import os
import asyncio
from dria.factory import Simple
from dria.client import Dria
from dria.models import Task, Model

dria = Dria(rpc_token=os.environ["DRIA_RPC_TOKEN"])


async def evaluate():
    simple = Simple()
    res = await dria.execute(
        Task(
            workflow=simple.workflow(prompt="Write a poem about love"),
            models=[Model.GEMMA2_9B_FP16],
        ),
        timeout=45,
    )
    return simple.parse_result(res)


def main():
    result = asyncio.run(evaluate())
    print(result)

Building a Complex Pipeline

For more complex scenarios, you can use the PipelineBuilder to create multi-step pipelines:

Here's an example of a pipeline that extends a list.

import logging
from typing import Optional, List, Union

from dria.client import Dria
from dria.models import Model
from dria.pipelines import Pipeline, PipelineConfig
from dria.pipelines.builder import PipelineBuilder
from .extender import ListExtender
from .generate_subtopics import GenerateSubtopics

logger = logging.getLogger(__name__)


class ListExtenderPipeline:

    def __init__(
            self,
            dria: Dria,
            config: PipelineConfig,
            models: Optional[Union[List[Model], List[List[Model]]]] = None,
    ):
        self.pipeline_config: PipelineConfig = config or PipelineConfig()
        self.pipeline = PipelineBuilder(self.pipeline_config, dria)
        self.models_list = models or [
            [Model.GEMMA2_9B_FP16],
            [Model.GPT4O],
        ]

    def build(self, list: List[str], granularize: bool = False) -> Pipeline:
        self.pipeline.input(e_list=list)
        self.pipeline << ListExtender().set_models(self.models_list[0]).custom()
        if granularize:
            (
                    self.pipeline
                    << GenerateSubtopics().set_models(self.models_list[1]).custom()
            )
        return self.pipeline.build()

API Usage

You can use the Dria SDK on the API level to create your own workflows and pipelines.

from fastapi import FastAPI, HTTPException, BackgroundTasks
from pydantic import BaseModel, Field
from dria.client import Dria
from dria.pipeline.pipeline import PipelineConfig, Pipeline
from pipeline import create_subtopic_pipeline

app = FastAPI(title="Dria SDK Example")
dria = Dria()


@app.on_event("startup")
async def startup_event():
    await dria.initialize()


class PipelineRequest(BaseModel):
    input_text: str = Field(..., description="The input text for the pipelines to process")


class PipelineResponse(BaseModel):
    pipeline_id: str = Field(..., description="Unique identifier for the created pipelines")


pipeline_config = PipelineConfig(retry_interval=5)
pipelines = {}


@app.post("/run_pipeline", response_model=PipelineResponse)
async def run_pipeline(request: PipelineRequest, background_tasks: BackgroundTasks):
    pipeline = await create_subtopic_pipeline(dria, request.input_text, pipeline_config)
    pipelines[pipeline.pipeline_id] = pipeline
    background_tasks.add_task(pipeline.execute)
    return PipelineResponse(pipeline_id=pipeline.pipeline_id)


@app.get("/pipeline_status/{pipeline_id}")
async def get_pipeline_status(pipeline_id: str):
    if pipeline_id not in pipelines:
        raise HTTPException(status_code=404, detail="Pipeline not found")

    pipeline = pipelines[pipeline_id]
    state, status, result = pipeline.poll()

    if result is not None:
        del pipelines[pipeline_id]

    return {"status": status, "state": state, "result": result}

# Usage example:
# uvicorn main:app --host 0.0.0.0 --port 8005

For more detailed API documentation, see on our documentation site.

License

Dria SDK is released under the MIT License.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dria-0.0.87.tar.gz (89.0 kB view details)

Uploaded Source

Built Distribution

dria-0.0.87-py3-none-any.whl (137.1 kB view details)

Uploaded Python 3

File details

Details for the file dria-0.0.87.tar.gz.

File metadata

  • Download URL: dria-0.0.87.tar.gz
  • Upload date:
  • Size: 89.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.14 Darwin/23.4.0

File hashes

Hashes for dria-0.0.87.tar.gz
Algorithm Hash digest
SHA256 89694a08b8418c981962558d5250f4763d743fb7c5afdc71caa387c2c2811e98
MD5 c302eaef240d89e8a197500f96072888
BLAKE2b-256 01ffa3c6674b924059e9c872747c21676d37cc2bb55d5b3a66adefe1067386de

See more details on using hashes here.

File details

Details for the file dria-0.0.87-py3-none-any.whl.

File metadata

  • Download URL: dria-0.0.87-py3-none-any.whl
  • Upload date:
  • Size: 137.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.14 Darwin/23.4.0

File hashes

Hashes for dria-0.0.87-py3-none-any.whl
Algorithm Hash digest
SHA256 550f97fec77f5c87d0c71067250a0c80e4687d864fea33e5a243062b9828ce0d
MD5 492bc1cbe2329307a3c792aa33e7209a
BLAKE2b-256 9f02dd8bb79acdb03f9f07a991cdffacc6975864c6b6bf864b3e9a1cbc305148

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page