Skip to main content

Dria SDK - A Python library for interacting with the Dria Network

Project description

Dria-SDK

Dria SDK is a powerful SDK for building and executing AI-powered workflows and pipelines. It provides a flexible and extensible framework for creating complex AI tasks, managing distributed computing resources, and handling various AI models.

Table of Contents

  1. Installation
  2. Features
  3. Login
  4. Getting Started
  5. Usage Examples
  6. API Usage
  7. License

Installation

To install Dria SDK, you can use pip:

pip install dria

Features

  • Create and manage AI workflows and pipelines
  • Support for multiple AI models
  • Distributed task execution
  • Flexible configuration options
  • Built-in error handling and retries
  • Extensible callback system

Login

Dria SDK uses authentication token for sending tasks to the Dria Network. You should get your rpc token from Dria Login API.

Getting Started

To get started with Dria SDK, you'll need to set up your environment and initialize the Dria client:

import os
from dria.client import Dria

# Initialize the Dria client
dria = Dria(rpc_token=os.environ["DRIA_RPC_TOKEN"])

Usage Examples

Creating a Simple Workflow

Here's an example of creating a simple workflow for generating a poem:

import os
import asyncio
from dria.factory import Simple
from dria.client import Dria
from dria.models import Task, Model

dria = Dria(rpc_token=os.environ["DRIA_RPC_TOKEN"])


async def evaluate():
    simple = Simple()
    res = await dria.execute(
        Task(
            workflow=simple.workflow(prompt="Write a poem about love"),
            models=[Model.GEMMA2_9B_FP16],
        ),
        timeout=45,
    )
    return simple.parse_result(res)


def main():
    result = asyncio.run(evaluate())
    print(result)

Building a Complex Pipeline

For more complex scenarios, you can use the PipelineBuilder to create multi-step pipelines:

Here's an example of a pipeline that extends a list.

import logging
from typing import Optional, List, Union

from dria.client import Dria
from dria.models import Model
from dria.pipelines import Pipeline, PipelineConfig
from dria.pipelines.builder import PipelineBuilder
from .extender import ListExtender
from .generate_subtopics import GenerateSubtopics

logger = logging.getLogger(__name__)


class ListExtenderPipeline:

    def __init__(
            self,
            dria: Dria,
            config: PipelineConfig,
            models: Optional[Union[List[Model], List[List[Model]]]] = None,
    ):
        self.pipeline_config: PipelineConfig = config or PipelineConfig()
        self.pipeline = PipelineBuilder(self.pipeline_config, dria)
        self.models_list = models or [
            [Model.GEMMA2_9B_FP16],
            [Model.GPT4O],
        ]

    def build(self, list: List[str], granularize: bool = False) -> Pipeline:
        self.pipeline.input(e_list=list)
        self.pipeline << ListExtender().set_models(self.models_list[0]).custom()
        if granularize:
            (
                    self.pipeline
                    << GenerateSubtopics().set_models(self.models_list[1]).custom()
            )
        return self.pipeline.build()

API Usage

You can use the Dria SDK on the API level to create your own workflows and pipelines.

from fastapi import FastAPI, HTTPException, BackgroundTasks
from pydantic import BaseModel, Field
from dria.client import Dria
from dria.pipeline.pipeline import PipelineConfig, Pipeline
from pipeline import create_subtopic_pipeline

app = FastAPI(title="Dria SDK Example")
dria = Dria()


@app.on_event("startup")
async def startup_event():
    await dria.initialize()


class PipelineRequest(BaseModel):
    input_text: str = Field(..., description="The input text for the pipelines to process")


class PipelineResponse(BaseModel):
    pipeline_id: str = Field(..., description="Unique identifier for the created pipelines")


pipeline_config = PipelineConfig(retry_interval=5)
pipelines = {}


@app.post("/run_pipeline", response_model=PipelineResponse)
async def run_pipeline(request: PipelineRequest, background_tasks: BackgroundTasks):
    pipeline = await create_subtopic_pipeline(dria, request.input_text, pipeline_config)
    pipelines[pipeline.pipeline_id] = pipeline
    background_tasks.add_task(pipeline.execute)
    return PipelineResponse(pipeline_id=pipeline.pipeline_id)


@app.get("/pipeline_status/{pipeline_id}")
async def get_pipeline_status(pipeline_id: str):
    if pipeline_id not in pipelines:
        raise HTTPException(status_code=404, detail="Pipeline not found")

    pipeline = pipelines[pipeline_id]
    state, status, result = pipeline.poll()

    if result is not None:
        del pipelines[pipeline_id]

    return {"status": status, "state": state, "result": result}

# Usage example:
# uvicorn main:app --host 0.0.0.0 --port 8005

For more detailed API documentation, see on our documentation site.

License

Dria SDK is released under the MIT License.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dria-0.0.89.tar.gz (84.0 kB view details)

Uploaded Source

Built Distribution

dria-0.0.89-py3-none-any.whl (133.7 kB view details)

Uploaded Python 3

File details

Details for the file dria-0.0.89.tar.gz.

File metadata

  • Download URL: dria-0.0.89.tar.gz
  • Upload date:
  • Size: 84.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.14 Darwin/23.4.0

File hashes

Hashes for dria-0.0.89.tar.gz
Algorithm Hash digest
SHA256 633b7f9785ea66efecb5fd2b8c52245061461ff1e6d29409d05fad7878cb371f
MD5 481d14d608802861b0bffabf41914985
BLAKE2b-256 03cb6ce49cee5a7197ddc9a5490aa1dc8c7ca24e4ccd69a05886c38cca165f07

See more details on using hashes here.

File details

Details for the file dria-0.0.89-py3-none-any.whl.

File metadata

  • Download URL: dria-0.0.89-py3-none-any.whl
  • Upload date:
  • Size: 133.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.14 Darwin/23.4.0

File hashes

Hashes for dria-0.0.89-py3-none-any.whl
Algorithm Hash digest
SHA256 8f4eba03a03554acf21a144b278270edf9986b85c414cf4d9a2053c18711b4fd
MD5 6ff444c851693ec7519a71655377a716
BLAKE2b-256 758e7e6a55029cd40c344abfe68c969d2d0c7e94f4f5962050ef7476f3a959e2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page