Skip to main content

Enables creation of workflows for Dria Agents

Project description

Dria Workflows

Dria Workflows enables the creation of workflows for Dria Agents.

Installation

You can install Dria Workflows using pip:

pip install dria_workflows

Usage Example

Here's a simple example of how to use Dria Workflows:

import logging
from dria_workflows import WorkflowBuilder, Operator, Write, Edge, validate_workflow_json


def main():
    logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

    builder = WorkflowBuilder()

    # Add a step to your workflow
    builder.generative_step(id="write_poem", prompt="Write a poem as if you are Kahlil Gibran", operator=Operator.GENERATION, outputs=[Write.new("poem")])
    
    # Define the flow of your workflow
    flow = [Edge(source="write_poem", target="_end")]
    builder.flow(flow)
    
    # Set the return value of your workflow
    builder.set_return_value("poem")
    
    # Build your workflow
    workflow = builder.build()

    # Validate your workflow
    validate_workflow_json(workflow.model_dump_json(indent=2, exclude_unset=True, exclude_none=True))

    # Save workflow
    workflow.save("poem_workflow.json")


if __name__ == "__main__":
    main()

Here is a more complex workflow

import logging
from dria_workflows import WorkflowBuilder, ConditionBuilder, Operator, Write, GetAll, Read, Push, Edge, Expression, validate_workflow_json


def main():
    logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

    # Give a starting memory as input
    builder = WorkflowBuilder(memory={"topic_1":"Linear Algebra", "topic_2":"CUDA"})

    # Add steps to your workflow
    builder.generative_step(id="create_query", prompt="Write down a search query related to following topics: {{topic_1}} and {{topic_2}}. If any, avoid asking questions asked before: {{history}}", operator=Operator.GENERATION, inputs=[GetAll.new("history", False)], outputs=[Write.new("search_query")])
    builder.generative_step(id="search", prompt="{{search_query}}", operator=Operator.FUNCTION_CALLING, outputs=[Write.new("result"), Push.new("history")])
    builder.generative_step(id="evaluate", prompt="Evaluate if search result is related and high quality to given question by saying Yes or No. Question: {{search_query}} , Search Result: {{result}}. Only output Yes or No and nothing else.", operator=Operator.GENERATION, outputs=[Write.new("is_valid")])

    # Define the flow of your workflow
    flow = [
        Edge(source="create_query", target="search"),
        Edge(source="search", target="evaluate"),
        Edge(source="evaluate", target="_end", condition=ConditionBuilder.build(expected="Yes", target_if_not="create_query", expression=Expression.CONTAINS, input=Read.new("is_valid", True))),
    ]
    builder.flow(flow)

    # Set the return value of your workflow
    builder.set_return_value("result")

    # Build your workflow
    workflow = builder.build()
    validate_workflow_json(workflow.model_dump_json(indent=2, exclude_unset=True, exclude_none=True))

    workflow.save("search_workflow.json")


if __name__ == "__main__":
    main()

Detailed docs soon. andthattoo

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dria_workflows-0.1.3.tar.gz (11.1 kB view details)

Uploaded Source

Built Distribution

dria_workflows-0.1.3-py3-none-any.whl (13.4 kB view details)

Uploaded Python 3

File details

Details for the file dria_workflows-0.1.3.tar.gz.

File metadata

  • Download URL: dria_workflows-0.1.3.tar.gz
  • Upload date:
  • Size: 11.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.5 Darwin/23.6.0

File hashes

Hashes for dria_workflows-0.1.3.tar.gz
Algorithm Hash digest
SHA256 f8513a9c4ea3aab005d2c58fff177af5a7f0dbaac49f4c430573b0be5468375d
MD5 40e523d0d712372c0043e14c2abe3ec6
BLAKE2b-256 2a59919bee166e619ea459355664f39611db929b464b868d21a63eb8a016c287

See more details on using hashes here.

File details

Details for the file dria_workflows-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: dria_workflows-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 13.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.5 Darwin/23.6.0

File hashes

Hashes for dria_workflows-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 6d051e33e91b6b584a1f30f3e755c295d46f4a3d40404ac54c4b84afbf1e6176
MD5 3a7e0fc0da3ab8deebb8802356d57f59
BLAKE2b-256 c79e6e560cab6975ba6998755ceb77a35950944f85ebf1d41105ea25a614c1e9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page