Skip to main content

Pydantic-ish YAML configuration management.

Project description

driconfig

Test Publish Coverage Package version

A Pydantic-ish way to manage your project's YAML configurations.


Documentation: https://dribia.github.io/driconfig

Source Code: https://github.com/dribia/driconfig


The usage of YAML files to store configurations and parameters is widely accepted in the Python community, especially in Data Science environments.

DriConfig provides a clean interface between your Python code and these YAML configuration files.

It is heavily based on Pydantic's Settings Management, preserving its core functionalities and advantages.

Key features

  • Subclassing the DriConfig class we create an interface to any YAML configuration file.
  • Our project's configurations are then attributes of this class.
  • They are automatically filled with the values in the YAML configuration file.
  • We can define complex configuration structures using Pydantic models.
  • We preserve Pydantic's type casting and validation!

Example

Let's say we have a YAML configuration file config.yaml with the following data:

# config.yaml
model_parameters:
  eta: 0.2
  gamma: 2
  lambda: 1

date_interval:
  start: 2021-01-01
  end: 2021-12-31

Then we can parse with driconfig as follows:

from datetime import date
from typing import Dict

from driconfig import DriConfig
from pydantic import BaseModel


class DateInterval(BaseModel):
  """Model for the `date_interval` configuration."""
  start: date
  end: date

  
class AppConfig(DriConfig):
   """Interface for the config/config.yaml file."""

   class Config:
       """Configure the YAML file location."""

       config_folder = "."
       config_file_name = "config.yaml"

   model_parameters: Dict[str, float]
   date_interval: DateInterval

config = AppConfig()
print(config.json(indent=4))
"""
{
    "model_parameters": {
        "eta": 0.2,
        "gamma": 2.0,
        "lambda": 1.0
    },
    "date_interval": {
        "start": "2021-01-01",
        "end": "2021-12-31"
    }
}
"""

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

driconfig-0.2.0.tar.gz (6.5 kB view details)

Uploaded Source

Built Distribution

driconfig-0.2.0-py3-none-any.whl (5.9 kB view details)

Uploaded Python 3

File details

Details for the file driconfig-0.2.0.tar.gz.

File metadata

  • Download URL: driconfig-0.2.0.tar.gz
  • Upload date:
  • Size: 6.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.13 CPython/3.7.12 Linux/5.11.0-1028-azure

File hashes

Hashes for driconfig-0.2.0.tar.gz
Algorithm Hash digest
SHA256 32c6a9e2714874d1b17ab6cf63d2427fb46e798f53505b373993117b24ef9e71
MD5 063076fe7b1cda9f9289877126dfcb52
BLAKE2b-256 3d33ff2ba49d6053a97702042f2bd7c5fda45cbe8e09a785f38e5281a3d35b8b

See more details on using hashes here.

File details

Details for the file driconfig-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: driconfig-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 5.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.13 CPython/3.7.12 Linux/5.11.0-1028-azure

File hashes

Hashes for driconfig-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 57283cc63819b705c939a0b8009fef03a65668a27c1dc3f217deaf44bacaefc4
MD5 8836c8e71c9a76c88f5d8d9e92c7441e
BLAKE2b-256 5323141ce537f6b883059b4b864b9572f197735f3ae56a4be0d64dd040b363d8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page