Skip to main content

A High Level Python Deep Reinforcement Learning library. Great for beginners, for prototyping and quickly comparing algorithms

Project description

Gitter


Gitter Pytorch Gitter Gitter Gitter

A High Level Python Deep Reinforcement Learning library. Great for beginners, prototyping and quickly comparing algorithms

Environments

UNDER CONSTRUCTION!

Do not use yet!

System 3.5 3.6 3.7
Linux CPU Build Status Build Status
Linux GPU Build Status Build Status
Windows CPU / GPU Build Status
Linux (ppc64le) CPU Build Status Build Status
Linux (ppc64le) GPU Build Status Build Status

Installation

Run the following to install:

pip install drlkit

Usage

import numpy as np
from drlkit import TorchAgent, Plot, EnvironmentWrapper

ENV_NAME = "LunarLander-v2"
env = EnvironmentWrapper(ENV_NAME)
agent = TorchAgent(state_size=8, action_size=env.env.action_space.n, seed=0)

# Train the agent
env.fit(agent, n_episodes=1000)

# See the results
Plot.basic_plot(np.arange(len(env.scores)), env.scores, xlabel='Episode #', ylabel='Score')


# Play untrained agent
env.load_model(agent, env="LunarLander", elapsed_episodes=3000)
env.play(num_episodes=10, trained=False)

# Play trained agent
env.play(num_episodes=10, trained=True)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

drlkit-0.1.7.tar.gz (8.7 kB view details)

Uploaded Source

Built Distribution

drlkit-0.1.7-py3-none-any.whl (11.7 kB view details)

Uploaded Python 3

File details

Details for the file drlkit-0.1.7.tar.gz.

File metadata

  • Download URL: drlkit-0.1.7.tar.gz
  • Upload date:
  • Size: 8.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.6.8

File hashes

Hashes for drlkit-0.1.7.tar.gz
Algorithm Hash digest
SHA256 6ff0aeaacde9c46983b6f6c2fe77e9a99efcecc646a35bc8be6134c208635b02
MD5 4cc21969ada216512fe8cea24f5a327f
BLAKE2b-256 d6b58ab59bd1f93321ab687d257e9b0df5dd07fc7ba19ecfe8bc7718feb53b10

See more details on using hashes here.

File details

Details for the file drlkit-0.1.7-py3-none-any.whl.

File metadata

  • Download URL: drlkit-0.1.7-py3-none-any.whl
  • Upload date:
  • Size: 11.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.6.8

File hashes

Hashes for drlkit-0.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 5835bb9ffbbc9e34be8e2aef53cec60496fcba25a6e9ae9b0f0c8588107057a2
MD5 53411afdbb6ec7f4bde49211ed91499d
BLAKE2b-256 7c828f0d53757a4bc7fe063b52ce6fd98e879ce15e6d027654592fed641cc1dc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page