Skip to main content

Dirichlet Rescale Algorithm

Project description

drs

The Dirichlet-Rescale (DRS) algorithm is a method for generating vectors of random numbers such that:

  1. The values of the vector sum to a given total U
  2. Given a vector of upper bounds, each element of the returned vector is less than or equal to its corresponding upper bound
  3. Given a vector of lower bounds, each element of the returned vector is greater or equal to than its corresponding lower bound
  4. The distribution of the vectors in the space defined by the constraints is uniform.

DRS accomplishes this by drawing an initial point from the flat Dirichlet Distribution and performing rescaling operations until the point lies within the accepted region. The way in which the rescaling operations are performed preseves the uniformity of the distribution; the remainder of the algorithm is all about efficiently performing these operations and minimising the effects of the rescale operations (floating point error, running out of the finite amount of entropy encoded in the initial point).

DRS can be thought of as a generalised version of the UUnifast and RandFixedSum algorithms, and can be used as a replacement for both. Note that while RandFixedSum only supports symmetrical bounds (the same for each component of the vector), it may be faster than DRS when generating a large number of vectors with the same symmetric constraints.

The algorithm is described in more detail in the paper "Generating Utilization Vectors for the Systematic Evaluation of Schedulability Tests", published at RTSS 2020. The authors version can be found here: http://eprints.whiterose.ac.uk/167646/

If you wish to cite this work, please use the following references:

@inproceedings{GriffinRTSS2020,
  author = {David Griffin and Iain Bate and Robert I. Davis},
  title = {Generating Utilization Vectors for the Systematic Evaluation of Schedulability Tests},
  booktitle = {{IEEE} Real-Time Systems Symposium, {RTSS} 2020, Houston, Texas, USA},
  December 1-4, 2020},
  publisher = {{IEEE}},
  year = {2020},
  url = {https://www-users.cs.york.ac.uk/~robdavis/papers/DRSRTSS2020.pdf}
}

@software{david_griffin_2020_4118059,
  author = {David Griffin and Iain Bate and Robert I. Davis},
  title = {dgdguk/drs},
  publisher = {Zenodo},
  version = {latest}
  doi = {10.5281/zenodo.4118058},
  url = {https://doi.org/10.5281/zenodo.4118058}
}

If citing the software itself, please cite the correct version (the DOI of the above reference always resolves to the most recent version; the DOIs of specific versions can be found there).

DRS is licensed under the MIT license.

Usage

For general use, there is only one function to consider

def drs(
  n: int, 
  sumu: float, 
  upper_bounds: Optional[Sequence[Union[int, float]]]=None,
  lower_bounds: Optional[Sequence[Union[int, float]]]=None
) -> Sequence[float]: ...

The parameters are as follows

  • n: The number of elements to generate
  • sumu: The target sum for the generated elements
  • upper_bounds: An optional sequence of length n which gives the upper bounds on each returned value. If given, then all(x <= y for x, y in zip(output, upper_bounds)). If not provided, all upper bounds are set to sumu.
  • lower_bounds: An optional sequence of length n which gives the lower bounds on each returned value. If given, then all(x >= y for x, y in zip(output, lower_bounds)) If not provided, all lower bounds are set to 0.

Invalid inputs are checked for and will result in a ValueError (e.g. if sumu > sum(upper_bounds), or upper_bounds[n] < lower_bounds[n]).

Examples

from drs import drs
result = drs(2, 2)

Will produce vectors of length two such that sum(result) == 2

from drs import drs
result = drs(2, 3, [1.5, 3])

Will produce vectors of length two such that result[0] <= 1.5, result[1] <= 3, and sum(result) == 3.

from drs import drs
result = drs(2, 4, [2, 3], [1, 2])

Will produce vectors of length two such that 1 <= result[0] <= 2, 2 <= result[1] <= 3, and sum(result) == 4.

Other functions

Due to the amount of entropy in a floating point being finite, and DRS's nature as a rescaling algorithm, it is possible for DRS to exhaust it's source of entropy. This behaviour is controlled by the epsilon parameter, which defaults to 10**-4. DRS only guarantees that the values returned sum to within sumu*epsilon of the target, and that only the part of the result greater than sumu*epsilon is uniformly distributed. If more precision is required, the set_epsilon(epsilon: float) function can be used to adjust the epsilon parameter.

Limits

The maximum size of output vector DRS can produce is theoretically capped at 1015 for versions of Python that use 64-bit floats. In practice it's expected that this will be too computationally expensive for practical use. DRS has been tested to produce output vectors of up to size 200, however above 140 it may be necessary to use the optional mpmath support. Consult drs.py for more information.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

drs-2.0.0.tar.gz (10.2 kB view details)

Uploaded Source

Built Distribution

drs-2.0.0-py3-none-any.whl (10.1 kB view details)

Uploaded Python 3

File details

Details for the file drs-2.0.0.tar.gz.

File metadata

  • Download URL: drs-2.0.0.tar.gz
  • Upload date:
  • Size: 10.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.6

File hashes

Hashes for drs-2.0.0.tar.gz
Algorithm Hash digest
SHA256 69342d6d36eaadc8710dd1e9a2fabe90ac30d4f529391417ea448586ee29d222
MD5 f31c9b15e92d2b00deb866f35ca8559a
BLAKE2b-256 e90e8630255b555965ff827711f83449fef978d25259b15772b96c3f3e0a8e6b

See more details on using hashes here.

File details

Details for the file drs-2.0.0-py3-none-any.whl.

File metadata

  • Download URL: drs-2.0.0-py3-none-any.whl
  • Upload date:
  • Size: 10.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.6

File hashes

Hashes for drs-2.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 a07a8b75e12dbde62b8113fac5479503d1ca608c9ecde40b09e549d4828833fe
MD5 f1adffc9387b941c69646ce2437a03ab
BLAKE2b-256 e0f82052c9f426e9e2d9389443a98410a3dd5be35f90feb97d99ad8770704eff

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page