Pure Python Bloom Filter module
Project description
A pure python bloom filter (low storage requirement, probabilistic set datastructure) is provided.
Includes mmap, in-memory and disk-seek backends.
The user specifies the desired maximum number of elements and the desired maximum false positive probability, and the module calculates the rest.
- Example use:
>>> bf = bloom_filter_mod.Bloom_filter(ideal_num_elements_n=100, error_rate_p=0.01) >>> for i in range(0, 200, 2): ... bf.add(i) ... >>> for i in range(0, 200, 3): ... print(i in bf) ...
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
drs-bloom-filter-2.3.tar.gz
(6.5 kB
view hashes)
Built Distribution
Close
Hashes for drs_bloom_filter-2.3-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c456b9b827ae009f36b7a1ae07685a53c244ae0c0d81ce53f44bbfe3df657ac0 |
|
MD5 | 26129ad86941835b2b5fc2df9c551a83 |
|
BLAKE2b-256 | c21524d36430677ce841c79a9b06298aba1f69fdf9cf176e65a3d419e619b348 |