This tool provides methods to extract meaningful features from drug SMILES for Machine Learning operation
Project description
Usage
- Make sure you have Python installed in your system.
- Run Following command in the CMD.
pip install drug-smile-fet
Example
# example.py
from dsfet import fe_1mol
import pandas as pd
train_smiles = {'DRUG_NAME': {0: 'Luminespib', 1: 'Trametinib', 2: 'Venetoclax', 3: 'Olaparib', 4: 'Axitinib'},
'PUBCHEM_ID': {0: 135539077.0, 1: 11707110.0, 2: 49846579.0, 3: 23725625.0, 4: 6450551.0},
'SMILES': {0: 'CCNC(=O)C1=NOC(=C1C2=CC=C(C=C2)CN3CCOCC3)C4=CC(=C(C=C4O)O)C(C)C',
1: 'CC1=C2C(=C(N(C1=O)C)NC3=C(C=C(C=C3)I)F)C(=O)N(C(=O)N2C4=CC=CC(=C4)NC(=O)C)C5CC5',
2: 'CC1(CCC(=C(C1)C2=CC=C(C=C2)Cl)CN3CCN(CC3)C4=CC(=C(C=C4)C(=O)NS(=O)(=O)C5=CC(=C(C=C5)NCC6CCOCC6)[N+](=O)[O-])OC7=CN=C8C(=C7)C=CN8)C',
3: 'C1CC1C(=O)N2CCN(CC2)C(=O)C3=C(C=CC(=C3)CC4=NNC(=O)C5=CC=CC=C54)F',
4: 'CNC(=O)C1=CC=CC=C1SC2=CC3=C(C=C2)C(=NN3)/C=C/C4=CC=CC=N4'}
}
train_smiles_df = pd.DataFrame(data=train_smiles)
test_smile = train_smiles
test_smile_df = pd.DataFrame(test_smile)
#Train, Test, feature_sequences, feature_to_token_map = oneMolFeatureExtraction(trainSMILES=train_smiles_df, testSMILES=train_smiles_df,ngram_list=[1,2,3,4,5,6,7,8])
Train, Test, feature_sequences, feature_to_token_map = fe_1mol.oneMolFeatureExtraction(trainSMILES=train_smiles_df, testSMILES=None,ngram_list=[1,2,3,4,5,6,7,8])
Note:
The input to the method oneMolFeatureExtraction()
must be a pandas DataFrame with atleats two columns:
- DRUG_NAME
- SMILES
The column name should be in capital letters.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
drug-smile-fet-0.2.tar.gz
(5.2 kB
view details)
Built Distribution
File details
Details for the file drug-smile-fet-0.2.tar.gz
.
File metadata
- Download URL: drug-smile-fet-0.2.tar.gz
- Upload date:
- Size: 5.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | edb3aab70cb31eb8d12fd9ea0e42bde12ef5c40470a1ea5a29e61f361d8f140c |
|
MD5 | ec4c4028ff2399f463a56f8c83577fa3 |
|
BLAKE2b-256 | cb7dcf7b33aa289a4efcde52a27dd2181e41f3f0d803b79390e044eb10e839d9 |
File details
Details for the file drug_smile_fet-0.2-py3-none-any.whl
.
File metadata
- Download URL: drug_smile_fet-0.2-py3-none-any.whl
- Upload date:
- Size: 5.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ff61a450b7e6ede34dc981e9f3fb019ac96152a70f3402a785c2eb852959e0e0 |
|
MD5 | 6ce6aa82ef5b542efa800d65d56af936 |
|
BLAKE2b-256 | 4ac2bfbd913d7dfb0cf5875dabeeb85499774d4e0fe9b71239bb3e68bf2de4e6 |