Skip to main content

This tool provides methods to extract meaningful features from drug SMILES for Machine Learning operation

Project description

Usage

  • Make sure you have Python installed in your system.
  • Run Following command in the CMD.
 pip install drug-smile-fet

Example

# example.py
from dsfet import fe_1mol
import pandas as pd
train_smiles = {'DRUG_NAME': {0: 'Luminespib', 1: 'Trametinib', 2: 'Venetoclax', 3: 'Olaparib', 4: 'Axitinib'},
               'PUBCHEM_ID': {0: 135539077.0, 1: 11707110.0, 2: 49846579.0, 3: 23725625.0, 4: 6450551.0},
               'SMILES': {0: 'CCNC(=O)C1=NOC(=C1C2=CC=C(C=C2)CN3CCOCC3)C4=CC(=C(C=C4O)O)C(C)C',
                          1: 'CC1=C2C(=C(N(C1=O)C)NC3=C(C=C(C=C3)I)F)C(=O)N(C(=O)N2C4=CC=CC(=C4)NC(=O)C)C5CC5',
                          2: 'CC1(CCC(=C(C1)C2=CC=C(C=C2)Cl)CN3CCN(CC3)C4=CC(=C(C=C4)C(=O)NS(=O)(=O)C5=CC(=C(C=C5)NCC6CCOCC6)[N+](=O)[O-])OC7=CN=C8C(=C7)C=CN8)C',
                          3: 'C1CC1C(=O)N2CCN(CC2)C(=O)C3=C(C=CC(=C3)CC4=NNC(=O)C5=CC=CC=C54)F',
                          4: 'CNC(=O)C1=CC=CC=C1SC2=CC3=C(C=C2)C(=NN3)/C=C/C4=CC=CC=N4'}
               }
train_smiles_df = pd.DataFrame(data=train_smiles)

test_smile = train_smiles
test_smile_df = pd.DataFrame(test_smile)

#Train, Test, feature_sequences, feature_to_token_map = oneMolFeatureExtraction(trainSMILES=train_smiles_df, testSMILES=train_smiles_df,ngram_list=[1,2,3,4,5,6,7,8])
Train, Test, feature_sequences, feature_to_token_map = fe_1mol.oneMolFeatureExtraction(trainSMILES=train_smiles_df, testSMILES=None,ngram_list=[1,2,3,4,5,6,7,8])

Note:

The input to the method oneMolFeatureExtraction() must be a pandas DataFrame with atleats two columns:

  • DRUG_NAME
  • SMILES

The column name should be in capital letters.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

drug-smile-fet-0.2.tar.gz (5.2 kB view details)

Uploaded Source

Built Distribution

drug_smile_fet-0.2-py3-none-any.whl (5.6 kB view details)

Uploaded Python 3

File details

Details for the file drug-smile-fet-0.2.tar.gz.

File metadata

  • Download URL: drug-smile-fet-0.2.tar.gz
  • Upload date:
  • Size: 5.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for drug-smile-fet-0.2.tar.gz
Algorithm Hash digest
SHA256 edb3aab70cb31eb8d12fd9ea0e42bde12ef5c40470a1ea5a29e61f361d8f140c
MD5 ec4c4028ff2399f463a56f8c83577fa3
BLAKE2b-256 cb7dcf7b33aa289a4efcde52a27dd2181e41f3f0d803b79390e044eb10e839d9

See more details on using hashes here.

File details

Details for the file drug_smile_fet-0.2-py3-none-any.whl.

File metadata

File hashes

Hashes for drug_smile_fet-0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 ff61a450b7e6ede34dc981e9f3fb019ac96152a70f3402a785c2eb852959e0e0
MD5 6ce6aa82ef5b542efa800d65d56af936
BLAKE2b-256 4ac2bfbd913d7dfb0cf5875dabeeb85499774d4e0fe9b71239bb3e68bf2de4e6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page