Skip to main content

This tool provides methods to extract meaningful features from drug SMILES for Machine Learning operation

Project description

Pre-requisites

Install RdKit library:

Usage

  • Make sure you have Python installed in your system.
  • Run Following command in the CMD.
 pip install drug-smile-fet

Example

# example.py
from dsfet import fe_1mol
import pandas as pd
train_smiles = {'DRUG_NAME': {0: 'Luminespib', 1: 'Trametinib', 2: 'Venetoclax', 3: 'Olaparib', 4: 'Axitinib'},
               'PUBCHEM_ID': {0: 135539077.0, 1: 11707110.0, 2: 49846579.0, 3: 23725625.0, 4: 6450551.0},
               'SMILES': {0: 'CCNC(=O)C1=NOC(=C1C2=CC=C(C=C2)CN3CCOCC3)C4=CC(=C(C=C4O)O)C(C)C',
                          1: 'CC1=C2C(=C(N(C1=O)C)NC3=C(C=C(C=C3)I)F)C(=O)N(C(=O)N2C4=CC=CC(=C4)NC(=O)C)C5CC5',
                          2: 'CC1(CCC(=C(C1)C2=CC=C(C=C2)Cl)CN3CCN(CC3)C4=CC(=C(C=C4)C(=O)NS(=O)(=O)C5=CC(=C(C=C5)NCC6CCOCC6)[N+](=O)[O-])OC7=CN=C8C(=C7)C=CN8)C',
                          3: 'C1CC1C(=O)N2CCN(CC2)C(=O)C3=C(C=CC(=C3)CC4=NNC(=O)C5=CC=CC=C54)F',
                          4: 'CNC(=O)C1=CC=CC=C1SC2=CC3=C(C=C2)C(=NN3)/C=C/C4=CC=CC=N4'}
               }
train_smiles_df = pd.DataFrame(data=train_smiles)

test_smile = train_smiles
test_smile_df = pd.DataFrame(test_smile)

#Train, Test, feature_sequences, feature_to_token_map = oneMolFeatureExtraction(trainSMILES=train_smiles_df, testSMILES=train_smiles_df,ngram_list=[1,2,3,4,5,6,7,8])
Train, Test, feature_sequences, feature_to_token_map = fe_1mol.oneMolFeatureExtraction(trainSMILES=train_smiles_df, testSMILES=None,ngram_list=[1,2,3,4,5,6,7,8])

Note:

The input to the method oneMolFeatureExtraction() must be a pandas DataFrame with atleats two columns:

  • DRUG_NAME
  • SMILES

The column name should be in capital letters.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

drug-smile-fet-1.0.1.tar.gz (5.5 kB view details)

Uploaded Source

Built Distribution

drug_smile_fet-1.0.1-py3-none-any.whl (5.8 kB view details)

Uploaded Python 3

File details

Details for the file drug-smile-fet-1.0.1.tar.gz.

File metadata

  • Download URL: drug-smile-fet-1.0.1.tar.gz
  • Upload date:
  • Size: 5.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for drug-smile-fet-1.0.1.tar.gz
Algorithm Hash digest
SHA256 e3e964b8f8c1c8366855e608cf3a8ad0e86e6b74019c567d9b138b8faacd94b9
MD5 6a5d1374e99cf66b715954ab884bc934
BLAKE2b-256 7c6c5d4c730b4024e87d2c37b4df5ceb54782b1ea03e450375bbd40858055dac

See more details on using hashes here.

File details

Details for the file drug_smile_fet-1.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for drug_smile_fet-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 18c52953e3c9698913b74aee784ddc9ca04d1b9e20a6ab578d7b3e1028954fb0
MD5 baa7bbdca06ed133941ccddda20aa82d
BLAKE2b-256 32ccce9f8b9ee7b41ac92f75dd04405e209397f8453a8e083406e948229e7421

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page