Skip to main content

This tool provides methods to extract meaningful features from drug SMILES for Machine Learning operation

Project description

Pre-requisites

Install RdKit library:

Usage

  • Make sure you have Python installed in your system.
  • Run Following command in the CMD.
 pip install drug-smile-fet

Example

# example.py
from dsfet import fe_1mol
import pandas as pd
train_smiles = {'DRUG_NAME': {0: 'Luminespib', 1: 'Trametinib', 2: 'Venetoclax', 3: 'Olaparib', 4: 'Axitinib'},
               'PUBCHEM_ID': {0: 135539077.0, 1: 11707110.0, 2: 49846579.0, 3: 23725625.0, 4: 6450551.0},
               'SMILES': {0: 'CCNC(=O)C1=NOC(=C1C2=CC=C(C=C2)CN3CCOCC3)C4=CC(=C(C=C4O)O)C(C)C',
                          1: 'CC1=C2C(=C(N(C1=O)C)NC3=C(C=C(C=C3)I)F)C(=O)N(C(=O)N2C4=CC=CC(=C4)NC(=O)C)C5CC5',
                          2: 'CC1(CCC(=C(C1)C2=CC=C(C=C2)Cl)CN3CCN(CC3)C4=CC(=C(C=C4)C(=O)NS(=O)(=O)C5=CC(=C(C=C5)NCC6CCOCC6)[N+](=O)[O-])OC7=CN=C8C(=C7)C=CN8)C',
                          3: 'C1CC1C(=O)N2CCN(CC2)C(=O)C3=C(C=CC(=C3)CC4=NNC(=O)C5=CC=CC=C54)F',
                          4: 'CNC(=O)C1=CC=CC=C1SC2=CC3=C(C=C2)C(=NN3)/C=C/C4=CC=CC=N4'}
               }
train_smiles_df = pd.DataFrame(data=train_smiles)

test_smile = train_smiles
test_smile_df = pd.DataFrame(test_smile)

#Train, Test, feature_sequences, feature_to_token_map = fe_1mol.oneMolFeatureExtraction(trainSMILES=train_smiles_df, testSMILES=train_smiles_df,ngram_list=[1,2,3,4,5,6,7,8])
Train, Test, feature_sequences, feature_to_token_map = fe_1mol.oneMolFeatureExtraction(trainSMILES=train_smiles_df, testSMILES=None,ngram_list=[1,2,3,4,5,6,7,8])

Note:

The input to the method oneMolFeatureExtraction() must be a pandas DataFrame with atleats two columns:

  • DRUG_NAME
  • SMILES

The column name should be in capital letters.

Cite us at:

Rahul Sharma, & Jake Y. Chen. (2022). Drug SMILE Feature Extraction Tool (1.0.3). Zenodo. https://doi.org/10.5281/zenodo.7072304

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

drug-smile-fet-1.0.3.tar.gz (5.6 kB view details)

Uploaded Source

Built Distribution

drug_smile_fet-1.0.3-py3-none-any.whl (5.9 kB view details)

Uploaded Python 3

File details

Details for the file drug-smile-fet-1.0.3.tar.gz.

File metadata

  • Download URL: drug-smile-fet-1.0.3.tar.gz
  • Upload date:
  • Size: 5.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for drug-smile-fet-1.0.3.tar.gz
Algorithm Hash digest
SHA256 b8d72454be7717e0ee0c901036b8d3498505e4c9443119cf3d408c8b16ec978c
MD5 6e75036ae778c75df14a4d16bb7f11eb
BLAKE2b-256 ba167121789f88da1330c67f7de4030bb4e116617884b452fd8be41b7481f3dd

See more details on using hashes here.

File details

Details for the file drug_smile_fet-1.0.3-py3-none-any.whl.

File metadata

File hashes

Hashes for drug_smile_fet-1.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 2196f5526128dc8556995a0d2a1e239f71bca907c93a735c54890a6450004135
MD5 2c2172d2c7563dd6d83e202437f31034
BLAKE2b-256 3212535b1c00ed3e5f2cc508c4ce95b69c1e13d36fc90d48b0b378c96295124e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page