Skip to main content

This tool provides methods to extract meaningful features from drug SMILES for AI-Based Drug Development.

Project description

Pre-requisites

Install RdKit library:

Usage

  • Make sure you have Python installed in your system.
  • Run Following command in the CMD.
 pip install drug-smile-fet

Example

# example.py
from dsfet import fe_1mol
import pandas as pd
train_smiles = {'DRUG_NAME': {0: 'Luminespib', 1: 'Trametinib', 2: 'Venetoclax', 3: 'Olaparib', 4: 'Axitinib'},
               'PUBCHEM_ID': {0: 135539077.0, 1: 11707110.0, 2: 49846579.0, 3: 23725625.0, 4: 6450551.0},
               'SMILES': {0: 'CCNC(=O)C1=NOC(=C1C2=CC=C(C=C2)CN3CCOCC3)C4=CC(=C(C=C4O)O)C(C)C',
                          1: 'CC1=C2C(=C(N(C1=O)C)NC3=C(C=C(C=C3)I)F)C(=O)N(C(=O)N2C4=CC=CC(=C4)NC(=O)C)C5CC5',
                          2: 'CC1(CCC(=C(C1)C2=CC=C(C=C2)Cl)CN3CCN(CC3)C4=CC(=C(C=C4)C(=O)NS(=O)(=O)C5=CC(=C(C=C5)NCC6CCOCC6)[N+](=O)[O-])OC7=CN=C8C(=C7)C=CN8)C',
                          3: 'C1CC1C(=O)N2CCN(CC2)C(=O)C3=C(C=CC(=C3)CC4=NNC(=O)C5=CC=CC=C54)F',
                          4: 'CNC(=O)C1=CC=CC=C1SC2=CC3=C(C=C2)C(=NN3)/C=C/C4=CC=CC=N4'}
               }
train_smiles_df = pd.DataFrame(data=train_smiles)

test_smile = train_smiles
test_smile_df = pd.DataFrame(test_smile)

#Example 1: to call NLP-based feature extraction method
#Train, Test, feature_sequences, feature_to_token_map = fe_1mol.oneMolFeatureExtraction(trainSMILES=train_smiles_df, testSMILES=train_smiles_df,ngram_list=[1,2,3,4,5,6,7,8])
Train, Test, feature_sequences, feature_to_token_map = fe_1mol.oneMolFeatureExtraction(trainSMILES=train_smiles_df, testSMILES=None,ngram_list=[1,2,3,4,5,6,7,8])

#Example 2: to call Morgan Fingerprints based feature extraction method
#nBits is the number of bits in the fingerprint
result= fe_1mol.morganFingerPrint(train_smiles_df, nBits=1024)

Note:

The input to the method oneMolFeatureExtraction() and morganFingerPrint() must be a pandas DataFrame and the Drug SMILES column name must be in uppercase:

  • e.g., SMILES

Cite us at:

Rahul Sharma, & Jake Y. Chen. (2022). Drug SMILE Feature Extraction Tool (1.0.3). Zenodo. https://doi.org/10.5281/zenodo.7072304

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

drug-smile-fet-1.0.5.tar.gz (6.8 kB view details)

Uploaded Source

Built Distribution

drug_smile_fet-1.0.5-py3-none-any.whl (7.1 kB view details)

Uploaded Python 3

File details

Details for the file drug-smile-fet-1.0.5.tar.gz.

File metadata

  • Download URL: drug-smile-fet-1.0.5.tar.gz
  • Upload date:
  • Size: 6.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.6

File hashes

Hashes for drug-smile-fet-1.0.5.tar.gz
Algorithm Hash digest
SHA256 cfd273ede1c1d0c353bc348b47d742b358f2137ce154c7b65c832b984fc452d9
MD5 be370bda0638b553413d2607e3215066
BLAKE2b-256 eb344ff7a1808a4b3ff70255f8273185dd46e97b8cdb58bf7d407def931a33e8

See more details on using hashes here.

File details

Details for the file drug_smile_fet-1.0.5-py3-none-any.whl.

File metadata

File hashes

Hashes for drug_smile_fet-1.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 ff0ef9f38c729216460d8a7949423c1535d3782c541d9df99d07f3e82359b85f
MD5 a3f77d63297f73ed06d30d6061fff0a7
BLAKE2b-256 9127a3afcd22af791c28d6fc4d4c0aec98402668f3bd02d7bdaf77f1988c83bc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page