This tool provides methods to extract meaningful features from drug SMILES for AI-Based Drug Development.
Project description
Pre-requisites
Install RdKit library:
Usage
- Make sure you have Python installed in your system.
- Run Following command in the CMD.
pip install drug-smile-fet
Example
# example.py
from dsfet import fe_1mol
import pandas as pd
train_smiles = {'DRUG_NAME': {0: 'Luminespib', 1: 'Trametinib', 2: 'Venetoclax', 3: 'Olaparib', 4: 'Axitinib'},
'PUBCHEM_ID': {0: 135539077.0, 1: 11707110.0, 2: 49846579.0, 3: 23725625.0, 4: 6450551.0},
'SMILES': {0: 'CCNC(=O)C1=NOC(=C1C2=CC=C(C=C2)CN3CCOCC3)C4=CC(=C(C=C4O)O)C(C)C',
1: 'CC1=C2C(=C(N(C1=O)C)NC3=C(C=C(C=C3)I)F)C(=O)N(C(=O)N2C4=CC=CC(=C4)NC(=O)C)C5CC5',
2: 'CC1(CCC(=C(C1)C2=CC=C(C=C2)Cl)CN3CCN(CC3)C4=CC(=C(C=C4)C(=O)NS(=O)(=O)C5=CC(=C(C=C5)NCC6CCOCC6)[N+](=O)[O-])OC7=CN=C8C(=C7)C=CN8)C',
3: 'C1CC1C(=O)N2CCN(CC2)C(=O)C3=C(C=CC(=C3)CC4=NNC(=O)C5=CC=CC=C54)F',
4: 'CNC(=O)C1=CC=CC=C1SC2=CC3=C(C=C2)C(=NN3)/C=C/C4=CC=CC=N4'}
}
train_smiles_df = pd.DataFrame(data=train_smiles)
test_smile = train_smiles
test_smile_df = pd.DataFrame(test_smile)
#Example 1: to call NLP-based feature extraction method
#Train, Test, feature_sequences, feature_to_token_map = fe_1mol.oneMolFeatureExtraction(trainSMILES=train_smiles_df, testSMILES=train_smiles_df,ngram_list=[1,2,3,4,5,6,7,8])
Train, Test, feature_sequences, feature_to_token_map = fe_1mol.oneMolFeatureExtraction(trainSMILES=train_smiles_df, testSMILES=None,ngram_list=[1,2,3,4,5,6,7,8])
#Example 2: to call Morgan Fingerprints based feature extraction method
#nBits is the number of bits in the fingerprint
result= fe_1mol.morganFingerPrint(train_smiles_df, nBits=1024)
Note:
The input to the method oneMolFeatureExtraction() and morganFingerPrint()
must be a pandas DataFrame and the Drug SMILES column name must be in uppercase:
- e.g., SMILES
Cite us at:
Rahul Sharma, & Jake Y. Chen. (2022). Drug SMILE Feature Extraction Tool (1.0.3). Zenodo. https://doi.org/10.5281/zenodo.7072304
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
drug-smile-fet-1.0.5.tar.gz
(6.8 kB
view details)
Built Distribution
File details
Details for the file drug-smile-fet-1.0.5.tar.gz
.
File metadata
- Download URL: drug-smile-fet-1.0.5.tar.gz
- Upload date:
- Size: 6.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cfd273ede1c1d0c353bc348b47d742b358f2137ce154c7b65c832b984fc452d9 |
|
MD5 | be370bda0638b553413d2607e3215066 |
|
BLAKE2b-256 | eb344ff7a1808a4b3ff70255f8273185dd46e97b8cdb58bf7d407def931a33e8 |
File details
Details for the file drug_smile_fet-1.0.5-py3-none-any.whl
.
File metadata
- Download URL: drug_smile_fet-1.0.5-py3-none-any.whl
- Upload date:
- Size: 7.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ff0ef9f38c729216460d8a7949423c1535d3782c541d9df99d07f3e82359b85f |
|
MD5 | a3f77d63297f73ed06d30d6061fff0a7 |
|
BLAKE2b-256 | 9127a3afcd22af791c28d6fc4d4c0aec98402668f3bd02d7bdaf77f1988c83bc |