Skip to main content

Damn simple finite state machine

Project description

dsm

Damn simple finite state machine

Build Status

About

DSM is a observable simple finite state machine implementation for Python. Transitions may be programmed declaratively or imperatively. Inputs and state changes are emitting observable events.

Requirements

  • Python 2.7, 3.5, 3.6
  • observable
  • six for compatibility between Python 2 and Python 3

Installation

pip install dsm

Usage

Django integration

It is possible to integrate dsm with Django models by declaring a StateMachineField.

from django.db import models
from dsm.fields import StateMachineField


class Order(models.Model):
    status = StateMachineField(
        transitions=(
            ('new', ['confirmed'], 'processing'),
            ('processing', ['cancel'], 'cancelled'),
            ('processing', ['send'], 'sending'),
            ('sending', ['deliver'], 'finished'),
        ),
        max_length=16,
        choices=(
            ('new', _('New')),
            ('processing', _('Processing')),
            ('sending', _('Sending')),
            ('finished', _('Finished')),
            ('canceled', _('Cancelled')),
        ),
        db_index=True,
        default='new'
    )

Now you can create an Order and check it's status:

>>> order = Order.objects.create()
>>> order.status
new
>>> type(order.status)
dsm.fields.MachineState

The string representation of status field is same as state name provided in transitions declaration, but internally there is always dsm.fields.MachineState instance.

Declarative

FSM declaration:

import string
import dsm

class SumatorMachine(dsm.StateMachine):
    class Meta:
        initial = 'init'
        transitions = (
            ('init', list(string.digits), 'digit_enter'),
            ('digit_enter', list(string.digits), 'digit_enter'),
            ('digit_enter', '=', 'summarize'),
        )

Usage:

Initialization:

fsm = SumatorMachine()

Processing one value:

fsm.process(value)

Processing multiple values:

fsm.process_many(iterable)

Gathering the current state:

>>> fsm.state
'summarize'

Resetting to the intial state:

fsm.reset()

Listening on events:

fsm.when('state', func)

Events example:

>>> the_sum = 0

>>> def add_digit(x): global the_sum; the_sum += int(x)
>>> def reset(x): global the_sum; the_sum = 0

>>> fsm = SumatorMachine()
>>> fsm.when('digit_enter', add_digit)
>>> fsm.when('init', reset)

>>> fsm.process_many('666=')
'summarize'

>>> the_sum
18

Events example (class based):

>>> class Sumator(object):
...     def __init__(self):
...         self.total = 0
...         self.fsm = SumatorMachine()
...         self.fsm.when('digit_enter', self.add)
...         self.fsm.when('init', self.reset)
...
...     def add(self, x):
...         self.total += int(x)
...
...     def reset(self, x):
...         self.total = 0
...
...     def summarize(self, values):
...         self.fsm.reset()
...         self.fsm.process_many(values+'=')
...         return self.total

>>> s = Sumator()
>>> s.summarize('666')
18

Imperative

import string
import dsm

fsm = dsm.StateMachine(
        initial='init',
        transitions=dsm.Transitions((
                ('init', list(string.digits), 'digit_enter'),
                ('digit_enter', list(string.digits), 'digit_enter'),
                ('digit_enter', '=', 'summarize'),
            ))
        )

License

BSD

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dsm-0.5.3.tar.gz (5.5 kB view details)

Uploaded Source

Built Distribution

dsm-0.5.3-py3-none-any.whl (8.3 kB view details)

Uploaded Python 3

File details

Details for the file dsm-0.5.3.tar.gz.

File metadata

  • Download URL: dsm-0.5.3.tar.gz
  • Upload date:
  • Size: 5.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.41.0 CPython/3.8.1

File hashes

Hashes for dsm-0.5.3.tar.gz
Algorithm Hash digest
SHA256 817292dd9ce55f552ccffa6e9dfb63892978e4118bafd9b748c182ab13e45342
MD5 0def5536122adf92eb5c3c23b477c656
BLAKE2b-256 8bbf258211755bf809441635bacd7068a603fb9edfe581cefab36e1e87f1dd28

See more details on using hashes here.

File details

Details for the file dsm-0.5.3-py3-none-any.whl.

File metadata

  • Download URL: dsm-0.5.3-py3-none-any.whl
  • Upload date:
  • Size: 8.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.41.0 CPython/3.8.1

File hashes

Hashes for dsm-0.5.3-py3-none-any.whl
Algorithm Hash digest
SHA256 72a7d82b8b9f9aec8e97e3da7d86749e4a56df7e5626164ce26752420e4939a4
MD5 2f938f88290c4965ff3462050c23a7d6
BLAKE2b-256 855957e1609b3b697183d5659c7f46564d0fae65d3d11d723c8dedb516f5bd68

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page