Skip to main content

Starting points and helper functions for learning digital signal processing.

Project description

DSPFTW

Starting points and helper functions for learning digital signal processing.

Setup

If you haven't already, install Python 3.5 or greater, and the dspftw package.

python3 -m pip install dspftw --user

Intro

Decomposition

Superposition: The foundation of DSP

Sinusoids

Prefer to use the complex exponential form instead of real, as it's a more natural fit for fourier analysis and synthesis.

The following functions represent a complex sinusoid. They are equivalent, and take the same parameters:

  • A = Amplitude (y axis is amplitude).
  • f = Frequency (cycles per second) in Hertz. It is multiplied by 2π to get radians per second.
  • t = Time in seconds. These functions work in the time domain (x axis is time).
  • ϕ = Phase offset at t=0, in radians.
z(t) = A*exp(j*(2π*f*t+ϕ))

z(t) = A*cos(2π*f*t+ϕ)+j*A*sin(2π*f*t+ϕ)

We can define this in Python with the following.

import numpy as np

# Here we use the name "complex_sinusoid" instead of just "z".
def complex_sinusoid(A, f, t, phi): return A * np.exp(1j*(2*np.pi*f*t+phi))

In fact, this is defined in the dspftw package, so let's import that.

import dspftw

We can create our own sinusoid by defining everything except t.

def my_sinusoid(t): return dspftw.complex_sinusoid(A=5, f=5, t=t, phi=0)

We can get the signal at a bunch of times thanks to numpy arrays. We use numpy.linspace to generate the evenly spaced times.

import numpy as np
times = np.linspace(0, 1, num=25)  # 25 evenly spaced values between 0 and 1
my_signal = my_sinusoid(times)  # returns an array of complex values representing the signal

Now plot it out with dspftw.plot_complex(), which uses matplotlib.

import matplotlib.pyplot as plt
dspftw.plot_complex(my_signal)
plt.show()

Complex Exponential Signals

Roots of Unity

Roots of Unity Animation

Wolfram Mathworld

Delta Function

Conjugate

Complex Conjugate

Convolution

Convolution

Correlation

numpy.correlate

Kronecker Product

numpy.kron

Sample Signals

SigIDWiki sample signals

Loading Signals

Complex 8 bit

import numpy as np
signal = np.fromfile('filename', dtype='b')  # load the whole file
signal = np.fromfile('filename', dtype='b', count=1024)  # only load the first 1024 bytes of the file
signal = np.fromfile('filename', dtype='b', offset=1024)  # skip the first 1024 bytes of the file
signal = np.fromfile('filename', dtype='b', offset=1024, count=1024)  # skip 1024, then load 1024

This just loads the values as an array of real numbers, but we want it as complex. We have to interpret every other value as the imaginary component.

signal = signal[0::2] + signal[1::2]*1j

Complex 32 bit float, little-endian (x86)

signal = np.fromfile('filename', dtype='<f')

count and offset work as above, but note that offset is in bytes, so you must multiple by 4 since there are 4 bytes in 32 bits.

Complex 32 bit float, big-endian

signal = np.fromfile('filename', dtype='>f')

count and offset work as above, but note that offset is in bytes, so you must multiple by 4 since there are 4 bytes in 32 bits.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dspftw-2021.301.640.tar.gz (14.6 kB view details)

Uploaded Source

Built Distribution

dspftw-2021.301.640-py3-none-any.whl (19.9 kB view details)

Uploaded Python 3

File details

Details for the file dspftw-2021.301.640.tar.gz.

File metadata

  • Download URL: dspftw-2021.301.640.tar.gz
  • Upload date:
  • Size: 14.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for dspftw-2021.301.640.tar.gz
Algorithm Hash digest
SHA256 7d22e3872951a2a2a52bbc7f9b52f0a114b3bc1ddd4d6f5563ff0b54f08fd78e
MD5 1334e55aab6304c13016b9a44df5c08c
BLAKE2b-256 a5747c4a6c6b9960f953091f91e1fa4213160e760c516f5a08e558981ae9b316

See more details on using hashes here.

File details

Details for the file dspftw-2021.301.640-py3-none-any.whl.

File metadata

  • Download URL: dspftw-2021.301.640-py3-none-any.whl
  • Upload date:
  • Size: 19.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for dspftw-2021.301.640-py3-none-any.whl
Algorithm Hash digest
SHA256 0d7195d247aeeb20865dd76814092c3c5adbd61441d695d177f4ce46032cd4f9
MD5 9aeed0c8b4b921445b957a9cd9d71097
BLAKE2b-256 579a28b2e46accd9acd9e365165a0f7ff84c5ee1e7b86f772182e3b92760fd97

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page