Skip to main content

Visualize Tree, Graph, and Matrix data structures with ease.

Project description

Data Structure Plot (DSPlot)

Build Status Coverage Status GitHub license

DSPlot is a tool to simply visualize tree and graph data structures by serving as a Pythonic interface to the Graphviz layout. DSPlot allows you to easily draw trees, graphs (both directed and undirected), and matrices by passing data in primitive form and directly output an image.

⬇ Installation

0. Prerequisites

  • Python 3.7 or later
  • pip
  • virtualenv

1. Install Graphviz

  • MacOS:
brew install graphviz
  • Linux:
apt-get install graphviz libgraphviz-dev

2. Install package

$ pip install dsplot

🤟 Usage

  • Binary Tree:
from dsplot.tree import BinaryTree

tree = BinaryTree(nodes=[5, 4, 8, 11, None, 13, 4, 7, 2, None, None, 5, 1])
tree.plot()

tree

  • Graph:
from dsplot.graph import Graph

graph = Graph(
    {0: [1, 4, 5], 1: [3, 4], 2: [1], 3: [2, 4], 4: [], 5: []}, directed=True
)
graph.plot()

directed

from dsplot.graph import Graph

graph = Graph(
    {1: [2, 4], 2: [1, 3], 3: [2, 4, 5], 4: [1, 3], 5: [3, 6, 7], 6: [5], 7: [5]}, directed=False
)
graph.plot()

undirected

  • Matrix:
from dsplot.matrix import Matrix

matrix = Matrix([[1, 2, 3], [4, 5, 6], [1, 2, 6]])
matrix.plot()

matrix

  • Customization:
    You can customize the border color, shape, style, and fill color of the nodes, and the orientation (left to right - LR, top to bottom - TB) of the graph.
from dsplot.graph import Graph

graph = Graph(
    {0: [1, 4, 5], 1: [3, 4], 2: [1], 3: [2, 4], 4: [], 5: []}, directed=True
)
graph.plot(fill_color='#aec6cf')

colored

from dsplot.tree import BinaryTree

tree = BinaryTree(nodes=[5, 4, 8, 11, None, 13, 4, 7, 2, None, None, 5, 1])
tree.plot(orientation='LR', border_color='#FFCE30', fill_color='#aec6cf')

colored

  • Edge values for Graphs:
    For edge values, str and int data types are supported at the moment.
from dsplot.graph import Graph

graph = Graph(
    {0: [1, 4, 5], 1: [3, 4], 2: [1], 3: [2, 4], 4: [], 5: []},
    directed=True,
    edges={'01': 1, '04': 4, '05': 5, '13': 3, '14': 4, '21': 2, '32': 3, '34': 4},
)
graph.plot()

edge

🎁 Additional features

1. Tree traversals:

from dsplot.tree import BinaryTree

tree = BinaryTree(nodes=[5, 4, 8, 11, None, 13, 4, 7, 2, None, None, 5, 1])

print(tree.preorder())
# [5, 4, 11, 7, 2, 8, 13, 4, 5, 1]

print(tree.inorder())
# [7, 11, 2, 4, 5, 13, 8, 5, 4, 1]

print(tree.postorder())
# [7, 2, 11, 4, 13, 5, 1, 4, 8, 5]

2. Graph traversals:

from dsplot.graph import Graph

graph = Graph(
    {0: [1, 4, 5], 1: [3, 4], 2: [1], 3: [2, 4], 4: [], 5: []}, directed=True
)

print(graph.bfs())
# [0, 1, 4, 5, 3, 2]

print(graph.dfs())
# [0, 1, 3, 2, 4, 5]

📄 License

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dsplot-0.8.0.tar.gz (7.3 kB view hashes)

Uploaded source

Built Distribution

dsplot-0.8.0-py3-none-any.whl (8.8 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page