Skip to main content

dstack is an open-source framework for orchestration GPU workloads and development of generative AI models across multiple clouds.

Project description

dstack

Orchestrate GPU workloads across clouds

DocsExamplesBlogDiscord

Last commit PyPI - License

dstack is an open-source framework for orchestrating GPU workloads across multiple cloud GPU providers. It provides a simple cloud-agnostic interface for development and deployment of generative AI models.

Latest news ✨

Installation

To use dstack, install it with pip, and start the server.

pip install "dstack[all]" -U
dstack start

Configure clouds

Upon startup, the server sets up the default project called main. Prior to using dstack, make sure to configure clouds.

Once the server is up, you can orchestrate GPU workloads using either the CLI or Python API.

Using CLI

Define a configuration

The CLI allows you to define what you want to run as a YAML file and run it via the dstack run CLI command.

Configurations can be of three types: dev-environment, task, and service.

Dev environments

A dev environment is a virtual machine with a pre-configured IDE.

type: dev-environment

python: "3.11" # (Optional) If not specified, your local version is used

setup: # (Optional) Executed once at the first startup
  - pip install -r requirements.txt

ide: vscode

Tasks

A task can be either a batch job, such as training or fine-tuning a model, or a web application.

type: task

python: "3.11" # (Optional) If not specified, your local version is used

ports:
  - 7860

commands:
  - pip install -r requirements.txt
  - python app.py

While the task is running in the cloud, the CLI forwards its ports traffic to localhost for convenient access.

Services

A service is an application that is accessible through a public endpoint.

type: service

port: 7860

commands:
  - pip install -r requirements.txt
  - python app.py

Once the service is up, dstack makes it accessible from the Internet through the gateway.

Run a configuration

To run a configuration, use the dstack run command followed by working directory and the path to the configuration file.

dstack run . -f text-generation-inference/serve.dstack.yml --gpu 80GB -y

 RUN           BACKEND  INSTANCE              SPOT  PRICE STATUS    SUBMITTED
 tasty-zebra-1 lambda   200GB, 1xA100 (80GB)  no    $1.1  Submitted now
 
Privisioning...

Serving on https://tasty-zebra-1.mydomain.com

Using API

As an alternative to the CLI, you can run tasks and services programmatically via Python API.

import sys

import dstack

task = dstack.Task(
    image="ghcr.io/huggingface/text-generation-inference:latest",
    env={"MODEL_ID": "TheBloke/Llama-2-13B-chat-GPTQ"},
    commands=[
        "text-generation-launcher --trust-remote-code --quantize gptq",
    ],
    ports=["8080:80"],
)
resources = dstack.Resources(gpu=dstack.GPU(memory="20GB"))

if __name__ == "__main__":
    print("Initializing the client...")
    client = dstack.Client.from_config(repo_dir="~/dstack-examples")

    print("Submitting the run...")
    run = client.runs.submit(configuration=task, resources=resources)

    print(f"Run {run.name}: " + run.status())

    print("Attaching to the run...")
    run.attach()

    # After the endpoint is up, http://127.0.0.1:8080/health will return 200 (OK).

    try:
        for log in run.logs():
            sys.stdout.buffer.write(log)
            sys.stdout.buffer.flush()

    except KeyboardInterrupt:
        print("Aborting the run...")
        run.stop(abort=True)
    finally:
        run.detach()

More information

For additional information and examples, see the following links:

Licence

Mozilla Public License 2.0

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dstack-0.12.0rc2.tar.gz (130.4 kB view details)

Uploaded Source

Built Distribution

dstack-0.12.0rc2-py3-none-any.whl (202.1 kB view details)

Uploaded Python 3

File details

Details for the file dstack-0.12.0rc2.tar.gz.

File metadata

  • Download URL: dstack-0.12.0rc2.tar.gz
  • Upload date:
  • Size: 130.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for dstack-0.12.0rc2.tar.gz
Algorithm Hash digest
SHA256 7c2e2e2adf59e9f635f116571c5d7a8179e142ed490f432a98d1049ad065d82e
MD5 81628e08ef6395dae44cf1a40bcf83f6
BLAKE2b-256 e58e3b05564b8d2eb962d8cda57928d90d731752abe86b6db6c01b588001bd57

See more details on using hashes here.

File details

Details for the file dstack-0.12.0rc2-py3-none-any.whl.

File metadata

  • Download URL: dstack-0.12.0rc2-py3-none-any.whl
  • Upload date:
  • Size: 202.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for dstack-0.12.0rc2-py3-none-any.whl
Algorithm Hash digest
SHA256 34e7fc3bbd558ad588b2bf2604a351841fc351df8aebc3b2ed03930d1ea77fcc
MD5 ea9c8cac7fdfbfe84218ab81ebdfc151
BLAKE2b-256 673f72c4665e61caea33a2123b58b2cd489a27387179b09ae5a02410988ed270

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page