Skip to main content

A simple-to-use Python package for time series anomaly detection!

Project description

Dtaianomaly for Time Series Anomaly Detection

pipeline status coverage report Latest Release Downloads PyPI pyversions PyPI license

A simple-to-use Python package for the development and analysis of time series anomaly detection techniques. Here we describe the main usage of dtaianomaly, but be sure to check out the documentation for more information.

Installation

The preferred way to install dtaianomaly is via PyPi. See the documentation for more options.

pip install dtaianomaly

Features

The three key features of dtaianomaly are as follows:

  1. State-of-the-art time series anomaly detection via a simple API. Learn more!
  2. Develop custom models for anomaly detection. Learn more!
  3. Quantitative evaluation of time series anomaly detection. Learn more!

Example

Below code shows a simple example of dtaianomaly, which is part of the anomaly detection notebook. More examples are provided in the other notebooks and in the documentation.

from dtaianomaly.data import demonstration_time_series
from dtaianomaly.preprocessing import MovingAverage
from dtaianomaly.anomaly_detection import MatrixProfileDetector

# Load the data
X, y = demonstration_time_series()

# Preprocess the data using a moving average
preprocessor = MovingAverage(window_size=10)
X_, _ = preprocessor.fit_transform(X)

# Fit the matrix profile detector on the processed data
detector = MatrixProfileDetector(window_size=100)
detector.fit(X_)

# Compute either the decision scores, specific to the detector, or the anomaly probabilities
decision_scores = detector.decision_function(X_)
anomaly_probabilities = detector.predict_proba(X_)

Anomaly scores

Contact

Feel free to email to louis.carpentier@kuleuven.be if there are any questions, remarks, ideas, ...

License

Copyright (c) 2023 KU Leuven, DTAI Research Group

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dtaianomaly-0.2.1.tar.gz (31.4 kB view details)

Uploaded Source

Built Distribution

dtaianomaly-0.2.1-py3-none-any.whl (44.5 kB view details)

Uploaded Python 3

File details

Details for the file dtaianomaly-0.2.1.tar.gz.

File metadata

  • Download URL: dtaianomaly-0.2.1.tar.gz
  • Upload date:
  • Size: 31.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.10

File hashes

Hashes for dtaianomaly-0.2.1.tar.gz
Algorithm Hash digest
SHA256 ba2298e8f9dec41d38553d527c0092b5ce3e99dbdb1018846e0c9dc08a3c8b4c
MD5 85ab709cb12a6aa496ca8190b06cbd0a
BLAKE2b-256 c40b38de080aa05876e32f5df3ea39b2bbb0441133d59893093e88d07ee09e01

See more details on using hashes here.

File details

Details for the file dtaianomaly-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: dtaianomaly-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 44.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.10

File hashes

Hashes for dtaianomaly-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 39de200601b1b96ec28ac305c0bd1b10f9e60631d45b643638df14606839a3b9
MD5 6663f1c78003f9b77e42d36d83574714
BLAKE2b-256 2239dd09e7f77f0b7774787c4071ea4e776a034b20ee4446a25e4624091700e2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page