Skip to main content

Parser for DTED data.

Project description

DTED Parser

This is a package written in pure python (with help from numpy) to parse and investigate Digital Terrain Elevation Data (DTED) files. This package is tested to work on Shuttle Radar Topography Mission (SRTM) DTED files (as far as I can tell these are the only publicly available DTED files). This can be used as a library to parse these files into numpy arrays and additionally exposes a CLI that can be used to investigate individual DTED files.

For more information and resources about the DTED file format see the end of the README.

How to install

You can install this as a normal python package using pip

pip install dted

How to use

The following example code will parse DTED file checked into this repository for testing.

As a library

Parsing a DTED file into a numpy array is as simple as:

import numpy as np
from pathlib import Path
from dted import Tile

dted_file = Path("test/data/n41_w071_1arc_v3.dt2")
tile = Tile(dted_file)
assert isinstance(tile.data, np.ndarray)

Additionally, you can access the metadata of the DTED file (the User Header Label, Data Set Identification, and Accuracy Description records) easily.

from pathlib import Path
from dted import Tile

dted_file = Path("test/data/n41_w071_1arc_v3.dt2")
tile = Tile(dted_file)
print(tile.dsi.south_west_corner)

Parsing entire DTED files has been heavily optimized, but does still take a little bit of time. On my machine (2014 MacbookPro) parsing the 25MB example file take about 120 ms. However, if you only need to look up specific terrain elevations within a DTED file you do not need to parse the entire file. Doing the following takes <1ms on my machine:

from pathlib import Path
from dted import LatLon, Tile

dted_file = Path("test/data/n41_w071_1arc_v3.dt2")
tile = Tile(dted_file, in_memory=False)
print(tile.get_elevation(LatLon(latitude=41.5, longitude=-70.5)))

If for some reason you really need to eke out every bit of performance, and you thoroughly trust your DTED data, you speed up the data parsing by skipping the checksum verification. Doing the following takes about 75 ms on my machine:

import numpy as np
from pathlib import Path
from dted import Tile

dted_file = Path("test/data/n41_w071_1arc_v3.dt2")
tile = Tile(dted_file, in_memory=False)
tile.load_data(perform_checksum=False)

assert isinstance(tile.data, np.ndarray)

The final functionality the dted.Tile class offers is to easily check if a coordinate location is contained within the DTED file. This also does not require that the DTED data is fully loaded into memory:

from pathlib import Path
from dted import LatLon, Tile

dted_file = Path("test/data/n41_w071_1arc_v3.dt2")
tile = Tile(dted_file, in_memory=False)

assert LatLon(latitude=41.5, longitude=-70.25) in tile

As a CLI

Installing this package into an activated virtual environment also exposes the dted terminal command. This provides three pieces of functionality:

  1. See report of the metadata of the DTED file.
  2. Lookup terrain elevation at a specific point within the DTED file.
  3. Display and ASCII representation of the DTED file in your terminal.

To get a report of the file metadata:

(.venv) user@machine$ dted test/data/n41_w071_1arc_v3.dt2
File Path:          test/data/n41_w071_1arc_v3.dt2 (24 MB)
Product Level:      DTED2
Security Code:      U
Compilation Date:   02/2000
Maintenance Date:
Datums (V/H):       E96/WGS84

    (42.0N,71.0W)      (42.0N,70.0W)
          NW --------------- NE
          |                   |
          |                   |
          |                   |
          |                   |
          |                   |
          |                   |
          SW --------------- SE
    (41.0N,71.0W)      (41.0N,70.0W)

Origin:                 (41.0N,71.0W)
Resolution (lat/lon):   1.0"/1.0"
Accuracy (V/H):         6m/13m

To lookup terrain elevation at a specific point:

(.venv) user@machine$ dted test/data/n41_w071_1arc_v3.dt2 --location 41.7 -70.4
51 meters

To display the DTED file in your terminal:

(.venv) user@machine$ dted test/data/n41_w071_1arc_v3.dt2 --display

This will attempt to create an ASCII representation of the DTED file within your terminal at the best resolution possible. Increasing the size of your terminal window or zooming out your terminal window will increase the resolution of the chart:

Normal Resolution Image

High Resolution Image

Why did I add this feature? Why not?

If you want to plot this data like a sane person, you can use the following example code with the matplotlib package (not included)

import matplotlib.pyplot as plt
from pathlib import Path
from dted import Tile

dted_file = Path("test/data/n41_w071_1arc_v3.dt2")
tile = Tile(dted_file)
plt.imshow(tile.data.T[::-1], cmap="hot")

The DTED file format

This parser was created using the specification provided here:

https://www.dlr.de/eoc/Portaldata/60/Resources/dokumente/7_sat_miss/SRTM-XSAR-DEM-DTED-1.1.pdf

Some things to be aware of with the DTED file format:

  1. Some DTED files contain "void" values for data points where elevation data is not known (such as over bodies of water). An example of such a file can be found at test/data/n00_e006_3arc_v2.dt1. This package will emit a warning if void data is found, and the definition of the void value can be found in dted.definitions.VOID_DATA_VALUE.
  2. The DTED data is structured along longitudinal lines. Therefore, when accessing the data within the numpy array the rows correspond to longitude and the columns correspond to latitude. This may seem backwards to your intuition, i.e. you would access the elevation at a coordinate point with tile.data[longitude_index, latitude_index].
  3. Elevation within the DTED file is encoded using "signed magnitude" notation. This has no effect on a user of this package interacting with the parsed terrain elevation data, but it does slow down the parsing of this data as I do not know of an optimized method of parsing signed magnitude data in python. If someone knows how to do this, this parsing library could become even faster.

Where to find DTED data

Publicly available DTED data is relatively hard to find and access, but it can be done. The DTED files I used for testing and developing this package come from https://earthexplorer.usgs.gov/.

This EarthExplorer app provided by the USGS provides an interface to download many types of terrain data, including the SRTM DTED data. However, you need to make an account with them in order to perform the download, and I'm unsure of a way to use their machine-to-machine API to automate downloading data.

Contributing

Contributions are absolutely encouraged! To develop on this project you need to install the poetry package manager.

Clone the repo:

user@machine$ git clone https://github.com/bbonenfant/dted

Create and activate the virtual environment:

user@machine$ poetry install && source .venv/bin/activate

To run the tests:

(.venv) user@machine$ pytest .

If you are getting BLACK errors from pytest, run the black code formatter:

(.venv) user@machine$ black .

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dted-1.1.0.tar.gz (17.6 kB view details)

Uploaded Source

Built Distribution

dted-1.1.0-py3-none-any.whl (18.6 kB view details)

Uploaded Python 3

File details

Details for the file dted-1.1.0.tar.gz.

File metadata

  • Download URL: dted-1.1.0.tar.gz
  • Upload date:
  • Size: 17.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.8 CPython/3.9.6 Darwin/22.5.0

File hashes

Hashes for dted-1.1.0.tar.gz
Algorithm Hash digest
SHA256 49af4c634de4bb8afacffbacf5e24d0420fb514ffa5bcd8eaafe81a9f6353bf9
MD5 33b8756f9f115c3bec22fdda2c756064
BLAKE2b-256 363396140eae33151e2e3fec6a1c3aa3816ee81138ea0797c159e57e2573d7d3

See more details on using hashes here.

File details

Details for the file dted-1.1.0-py3-none-any.whl.

File metadata

  • Download URL: dted-1.1.0-py3-none-any.whl
  • Upload date:
  • Size: 18.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.8 CPython/3.9.6 Darwin/22.5.0

File hashes

Hashes for dted-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 c6de3701475ef0fb895ecb361ff6ecdcdc57f723a5aba4bf6acaf824f1cbfcbb
MD5 958fb28320d109107d009b6790799e15
BLAKE2b-256 c0a09acd0a84698e87978338c3afca5c18148c574b48e67c5d59d2944450b797

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page