TODO
Project description
.. raw:: html
<div align="center">
.. raw:: html
</div>
Intro
-----
**Detox** is an open source software library for machine learning
security. It contains tools for adversarial example generation and
provides a framework for building new types of attack methods.
Currently in the dev stage.
Attacks
-------
Available attack algorithms implemented in Detox:
- Fast Gradient Methods (FGM/FGSM)
```Tutorial`` </tutorial/source/fgsm.ipynb>`__
- Basic Iterative
```Tutorial`` </tutorial/source/basic_iterative.ipynb>`__
- Momentum Iterative
```Tutorial`` </tutorial/source/momentum_iterative.ipynb>`__
- DeepFool
- Universal Adversarial Perturbation (UAP)
- Jacobian-based Saliency Map Approach (JSMA)
- One Pixel Attack
- LBFGS
- Carlini Wagner L2
- Carlini Wagner L-inf
- Feature Adversaries
- Boundary Attack
- Elastic Net
- Natural Adversarial Examples (NAE)
The Team
~~~~~~~~
Detox is a community driven project. The project was initiated by
machine learning security team @ `KakaoBrain <kakaobrain.com>`__.
.. |license| image:: https://img.shields.io/github/license/mashape/apistatus.svg
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
dtox-0.1.0.tar.gz
(17.9 kB
view details)
Built Distribution
dtox-0.1.0-py3-none-any.whl
(26.7 kB
view details)
File details
Details for the file dtox-0.1.0.tar.gz
.
File metadata
- Download URL: dtox-0.1.0.tar.gz
- Upload date:
- Size: 17.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d397e724ea11eacceae9beb5b455a31e76161d7ba587198557974adabb40082a |
|
MD5 | bedc4ee540253dfa6a52fc3368f53607 |
|
BLAKE2b-256 | 497f728694df3e0b43e033e6b0d239dc7ced976db5ff126b3c63c50a8c798276 |
Provenance
File details
Details for the file dtox-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: dtox-0.1.0-py3-none-any.whl
- Upload date:
- Size: 26.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a431e8c1c5cd3cd978e4b8ed6316df254b1c3838ead95d6edeb1d9c847f56393 |
|
MD5 | 09e02fb21bde8838f3b55267d025df9a |
|
BLAKE2b-256 | e32fc4a25c97b54fef13ba61e7b3a256fbb45576f4b0055a0b660144388ea7c6 |