Skip to main content

Package to teach chemometrics in the context of fermentation processes

Project description

NOTE

This repository has been archived and no further development/maintanance will done. I will contiune and extend the work in this project in the new project named fermentools

dtu.prosys

About this project 🚀

This project intends to be a didactic tool to teach spectroscopy and chemometrics in the context of fermentation technology. During my studies, I often felt that many courses were theory-based only due to the limited access to real-world data. For this reason, I have decided to distribute the data I generated during my studies hoping to improve the learning experience of future students.

This module contains:

  • Training data (spectra of different samples and the glucose concentration).
  • Fermentation spectra (spectra measured in real-time every minute).
  • Fermentation HPLC data (measured off-line every hour).
  • Common preprocessing operations used in chemometrics.
  • Workflow to train partial least squares (PLS) models.
  • Plotting functions for time-series and spectral data.

These functions can be used as a starting point for the, but more advanced users are encouradged to explore other packages to play with this data (e.g., scikit-learn, or scipy).

About the data 📈

This project provides two datasets (a training and a validation set). Both data sets were recorded at the Technical University of Denmark, at the PROSYS research center (department of Chemical and Biochemical engineering) during 2019. More information about the dataset can be found in the following article Transforming data to information: A parallel hybrid model for real-time state estimation in lignocellulosic ethanol fermentation

The training set

The training set contains the spectra of 20 semi-synthetic samples and their reference glucose concentration measured with high performance liquid chromatography (HPLC). The spectra were measured using attenuated total refractance mid infrared (ATR-MIR) spectroscopy.

Validation set

The validation contains spectra measured every minute during a lignocellulose to ethanol fermentation. These spectra were collected in real-time using the same ATR-MIR instrument, connected to a flow-cell. Moreover, the extracellular concentrations of glucose, xylose, ethanol, furfural and acetic acid were also measured every hour using HPLC.

Installation 💻

Dependencies

This project is build targetting Python >= 3.7 to ensure compatibility with Google Colab.

User installation pip

pip install -U dtuprosys

Quick start 🏁

A complete example of can be found in the example.ipynb. The raw data can be conviniently accessed using as the following commands:

from dtuprosys.datasets import load_train_data, load_fermentation_data

to access the training data

train_spectra, train_hplc = load_train_data()

to access the validation data:

fermentation_spectra, fermentation_hplc = load_fermentation_data()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dtuprosys-0.1.24.tar.gz (6.4 MB view details)

Uploaded Source

Built Distribution

dtuprosys-0.1.24-py3-none-any.whl (6.5 MB view details)

Uploaded Python 3

File details

Details for the file dtuprosys-0.1.24.tar.gz.

File metadata

  • Download URL: dtuprosys-0.1.24.tar.gz
  • Upload date:
  • Size: 6.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for dtuprosys-0.1.24.tar.gz
Algorithm Hash digest
SHA256 d92a966135d13ad9a30d3115ea38701785abde92642a467b45a1429d34d395bf
MD5 689da322c65a54a0d27ceb36e6f281be
BLAKE2b-256 2c619a59de406edb6bd72308ec8a03a2e316293e10d463c35af8635d396fd222

See more details on using hashes here.

File details

Details for the file dtuprosys-0.1.24-py3-none-any.whl.

File metadata

  • Download URL: dtuprosys-0.1.24-py3-none-any.whl
  • Upload date:
  • Size: 6.5 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for dtuprosys-0.1.24-py3-none-any.whl
Algorithm Hash digest
SHA256 9623b7dabdd6fe81f3e71ca6695d3ef05af34ec5afef64d7cbf87c8798735e1e
MD5 a1f8f4f319695f98aded27413f1df37a
BLAKE2b-256 133de14b204a27c339a1045dc5ed5bd22c66639b0f28d07cdbc68d013c5d46aa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page