Skip to main content

A comprehensive implementation of dynamic time warping (DTW) algorithms.

Project description

Comprehensive implementation of Dynamic Time Warping algorithms.

DTW is a family of algorithms which compute the local stretch or compression to apply to the time axes of two timeseries in order to optimally map one (query) onto the other (reference). DTW outputs the remaining cumulative distance between the two and, if desired, the mapping itself (warping function). DTW is widely used e.g. for classification and clustering tasks in econometrics, chemometrics and general timeseries mining.

This package provides the most complete, freely-available (GPL) implementation of Dynamic Time Warping-type (DTW) algorithms up to date. It is a faithful Python equivalent of R’s DTW package on CRAN. Supports arbitrary local (e.g. symmetric, asymmetric, slope-limited) and global (windowing) constraints, fast native code, several plot styles, and more.

https://github.com/DynamicTimeWarping/dtw-python/workflows/Build%20and%20upload%20to%20PyPI/badge.svg https://badge.fury.io/py/dtw-python.svg https://codecov.io/gh/DynamicTimeWarping/dtw-python/branch/master/graph/badge.svg

Documentation

Please refer to the main DTW suite homepage for the full documentation and background.

The best place to learn how to use the package (and a hopefully a decent deal of background on DTW) is the companion paper Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw Package, which the Journal of Statistical Software makes available for free. It includes detailed instructions and extensive background on things like multivariate matching, open-end variants for real-time use, interplay between recursion types and length normalization, history, etc.

To have a look at how the dtw package is used in domains ranging from bioinformatics to chemistry to data mining, have a look at the list of citing papers.

Note: R is the prime environment for the DTW suite. Python’s docstrings and the API below are generated automatically for the sake of consistency and maintainability, and may not be as pretty.

Features

The implementation provides:

  • arbitrary windowing functions (global constraints), eg. the Sakoe-Chiba band and the Itakura parallelogram;

  • arbitrary transition types (also known as step patterns, slope constraints, local constraints, or DP-recursion rules). This includes dozens of well-known types:

  • partial matches: open-begin, open-end, substring matches

  • proper, pattern-dependent, normalization (exact average distance per step)

  • the Minimum Variance Matching (MVM) algorithm (Latecki et al.)

In addition to computing alignments, the package provides:

  • methods for plotting alignments and warping functions in several classic styles (see plot gallery);

  • graphical representation of step patterns;

  • functions for applying a warping function, either direct or inverse;

  • a fast native (C) core.

Multivariate timeseries can be aligned with arbitrary local distance definitions, leveraging the [proxy::dist](https://www.rdocumentation.org/packages/proxy/versions/0.4-23/topics/dist) (R) or [scipy.spatial.distance.cdist](https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cdist.html) (Python) functions.

Citation

When using in academic works please cite:

    1. Giorgino. Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw Package. J. Stat. Soft., 31 (2009) doi:10.18637/jss.v031.i07.

When using partial matching (unconstrained endpoints via the open.begin/open.end options) and/or normalization strategies, please also cite:

    1. Tormene, T. Giorgino, S. Quaglini, M. Stefanelli (2008). Matching Incomplete Time Series with Dynamic Time Warping: An Algorithm and an Application to Post-Stroke Rehabilitation. Artificial Intelligence in Medicine, 45(1), 11-34. doi:10.1016/j.artmed.2008.11.007

Source code

Releases (stable versions) are available in the dtw-python project on PyPi. Development occurs on GitHub at <https://github.com/DynamicTimeWarping/dtw-python>.

License

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>.

Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dtw_python-1.5.3.tar.gz (297.8 kB view details)

Uploaded Source

Built Distributions

dtw_python-1.5.3-cp313-cp313-win_amd64.whl (376.0 kB view details)

Uploaded CPython 3.13 Windows x86-64

dtw_python-1.5.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (785.4 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

dtw_python-1.5.3-cp313-cp313-macosx_11_0_arm64.whl (376.5 kB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

dtw_python-1.5.3-cp313-cp313-macosx_10_13_x86_64.whl (381.9 kB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

dtw_python-1.5.3-cp312-cp312-win_amd64.whl (376.2 kB view details)

Uploaded CPython 3.12 Windows x86-64

dtw_python-1.5.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (789.1 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

dtw_python-1.5.3-cp312-cp312-macosx_11_0_arm64.whl (377.4 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

dtw_python-1.5.3-cp312-cp312-macosx_10_9_x86_64.whl (383.1 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

dtw_python-1.5.3-cp311-cp311-win_amd64.whl (376.2 kB view details)

Uploaded CPython 3.11 Windows x86-64

dtw_python-1.5.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (801.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

dtw_python-1.5.3-cp311-cp311-macosx_11_0_arm64.whl (376.6 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

dtw_python-1.5.3-cp311-cp311-macosx_10_9_x86_64.whl (382.0 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

dtw_python-1.5.3-cp310-cp310-win_amd64.whl (376.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

dtw_python-1.5.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (764.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

dtw_python-1.5.3-cp310-cp310-macosx_11_0_arm64.whl (376.7 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

dtw_python-1.5.3-cp310-cp310-macosx_10_9_x86_64.whl (382.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

dtw_python-1.5.3-cp39-cp39-win_amd64.whl (376.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

dtw_python-1.5.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (766.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

dtw_python-1.5.3-cp39-cp39-macosx_11_0_arm64.whl (377.2 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

dtw_python-1.5.3-cp39-cp39-macosx_10_9_x86_64.whl (382.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

dtw_python-1.5.3-cp38-cp38-win_amd64.whl (374.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

dtw_python-1.5.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (775.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

dtw_python-1.5.3-cp38-cp38-macosx_11_0_arm64.whl (375.1 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

dtw_python-1.5.3-cp38-cp38-macosx_10_9_x86_64.whl (380.5 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

dtw_python-1.5.3-cp37-cp37m-win_amd64.whl (374.3 kB view details)

Uploaded CPython 3.7m Windows x86-64

dtw_python-1.5.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (736.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

dtw_python-1.5.3-cp37-cp37m-macosx_10_9_x86_64.whl (379.7 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file dtw_python-1.5.3.tar.gz.

File metadata

  • Download URL: dtw_python-1.5.3.tar.gz
  • Upload date:
  • Size: 297.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.5

File hashes

Hashes for dtw_python-1.5.3.tar.gz
Algorithm Hash digest
SHA256 ec154d8db2d5fac796059a41ec52546c9b9f858ab71401b9bb518817f7f1b7ac
MD5 1e479e489bc3b6738392e200ef70bcc2
BLAKE2b-256 2b498a80f463e4c5bedd77dc7c9e109562c06b647b02f8dd9c08c7a6aa1a2eb8

See more details on using hashes here.

File details

Details for the file dtw_python-1.5.3-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for dtw_python-1.5.3-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 41dc60d6bcc2f0a6dbed29c02839c70aa7048eb2be53ddcabcdb071eb4c4232d
MD5 9abeb5320f4f72a1ba3c4debd19df58a
BLAKE2b-256 3f79a622755c974892a61a6b07da77252fe59c8bfb7e74a7550e8bdf0ec2680f

See more details on using hashes here.

File details

Details for the file dtw_python-1.5.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dtw_python-1.5.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a01846c28bf79d249e9c0c5dcd718e1bcad3cfdbfb50eb93c4c0190cab8244db
MD5 21fc762f615ade433ef90ad1b0f7a2e6
BLAKE2b-256 52358c79d466883b1d594c6cf667f79c4b792f36c3df634c74381c9f581f0379

See more details on using hashes here.

File details

Details for the file dtw_python-1.5.3-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dtw_python-1.5.3-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b2e469c449f77b23f627a38801c1404b6a660a5e7128523b733e8a0ebff6f909
MD5 bdd058877398740f5f966999b52718fd
BLAKE2b-256 0fbe0f776b023793c0e6aac07c6be91e3383e62443eeff62cfe102b2e6887627

See more details on using hashes here.

File details

Details for the file dtw_python-1.5.3-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for dtw_python-1.5.3-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 2071aab6d4caa10bbb304a814a90684a2eef5617c8d482b0196dded266c9b8e4
MD5 1cf37d44fbba6aad7dd35e15110e582c
BLAKE2b-256 707c08e5414e5a39e50103e3ace3002fc6cc0d1eb385a9c680446e15629056a2

See more details on using hashes here.

File details

Details for the file dtw_python-1.5.3-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for dtw_python-1.5.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 f09555a5671f84a38eb0639980d2638d91293862f09b3d66ceea2d23d9934d3f
MD5 04c661cd75d1c41c97539a870fccefaf
BLAKE2b-256 afd924da82fb9a393f1810782bd19e68257d975d6c6972c02f3469568de89d2c

See more details on using hashes here.

File details

Details for the file dtw_python-1.5.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dtw_python-1.5.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4c816c2bfc918e9ac5c8e26e0400c77844d61e3dadf8837a9464dd25abe8bdea
MD5 7455c9e2024983221e8b681714af1bd4
BLAKE2b-256 66be35dd823eb51fe40adedec8d7d61b5b711d1d08f86a6d4d82b79b1831f9e6

See more details on using hashes here.

File details

Details for the file dtw_python-1.5.3-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dtw_python-1.5.3-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6cdedad418a41e9082aa473e007c5feae4a0947fcfa041d5aa89bfef92c999a7
MD5 1953a0e6424bc70dd17584eb07a17085
BLAKE2b-256 962d2432024210fb937c82c12d4a8bb3fe7b5c69b796ede010d44ec1493c0686

See more details on using hashes here.

File details

Details for the file dtw_python-1.5.3-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for dtw_python-1.5.3-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 16aaa97b4b93c17ddb43531cebf600ecfd63a5d4f41cba12555912b8a0af80a0
MD5 63e1cb0cb21f7db9fae8c5fe7f566a3f
BLAKE2b-256 11650072cba300952a856454d68e4602b5a4d992d2879c889457127b01d89e2c

See more details on using hashes here.

File details

Details for the file dtw_python-1.5.3-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for dtw_python-1.5.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 f5f6fe9a60d8f0cb4a3bf7c3f724a753328615672f181bb1c60e4a3061b79a52
MD5 b00c2f01c24100fbd88f6aaa3dffcea3
BLAKE2b-256 329fe0b91a75a810bec321909ed910ee5fca7ba6b7808f5e0f389d90d46623e8

See more details on using hashes here.

File details

Details for the file dtw_python-1.5.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dtw_python-1.5.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 956e29579ab0a136e35b672d7f2646e52b5fa506165c5bbc1af7bdc2c401d214
MD5 82ba85305d6aa36c69e7f3010576d89d
BLAKE2b-256 43b14266a1f93695a2ef60845d1e403457d328d16944ed6a2492880ee1075b2e

See more details on using hashes here.

File details

Details for the file dtw_python-1.5.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dtw_python-1.5.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 52b0e6604ea62db7a2610d7dba59ceb7c2a60e8d4e6963c9dc7ead172fac1b05
MD5 f25bec964d8d210d66c2c8703c2aabf7
BLAKE2b-256 380e663473a14139e1c0665e2cb3f45fa4b2dfd2956217971287063f4e31fc69

See more details on using hashes here.

File details

Details for the file dtw_python-1.5.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for dtw_python-1.5.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dfd248e5c8f67d6f714692bb116ad92fb9179582961889fd23f9318b21b132f6
MD5 1780e707fa38a88e8398568136b936ac
BLAKE2b-256 e7133e12bd62461ac46a7e4dab7d74d13eb93b6020fed53a7b5ca990094115ca

See more details on using hashes here.

File details

Details for the file dtw_python-1.5.3-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for dtw_python-1.5.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 245ca74704e3f6aceb22ec7109e7202e2e303cce5db9b80563a043332d8a0c37
MD5 a5f8f1ebf43a0107a8b9b7ce3c34af4c
BLAKE2b-256 dc3709218e5d8afebce0c8f96a3835c3778fd96ff4d3f4f24d41f56269d0c0f6

See more details on using hashes here.

File details

Details for the file dtw_python-1.5.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dtw_python-1.5.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5d725d3114d5bb17a851d20b0d1a3d9b65c391dadf2440d22ce66052b124e45d
MD5 f946d16f929574a7b0721fb91f09b998
BLAKE2b-256 450438a2533683f32ead0919ae6553e6b3c99c8ee8107fb459140587ad6c251f

See more details on using hashes here.

File details

Details for the file dtw_python-1.5.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dtw_python-1.5.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 49c227aa763302c0b7403f1cf04a2d4ac728a79f487a2963be62df453d08dd31
MD5 ab53281b5ee6408218bf92687273807e
BLAKE2b-256 b3b3b23e26779579a126aaba07fa838fa5e488037aa7c16c5261ec3455b7b51b

See more details on using hashes here.

File details

Details for the file dtw_python-1.5.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for dtw_python-1.5.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1fa7e79f091c08f8cf3a4d38a3f02f88a7813a2e00ae8b5a1b0febdf1be5134e
MD5 7cc2c0473c3647430d88be1c85e87bb8
BLAKE2b-256 21dccd23b8772981f40def9ad404556460a5f34e112742a421e002468cbc7a60

See more details on using hashes here.

File details

Details for the file dtw_python-1.5.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: dtw_python-1.5.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 376.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.5

File hashes

Hashes for dtw_python-1.5.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f82d3e43e169f5cb6afbb0501fdfd9b14761453dbc83199275cee47c0f61bdd8
MD5 73aae4260238ece7323f3e807e6fc0be
BLAKE2b-256 40b749b4c3f7109a64cd2a93a22d6506930c62c32e3631c707dd9601cd94837f

See more details on using hashes here.

File details

Details for the file dtw_python-1.5.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dtw_python-1.5.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9a208f7e31f6f28ad3f5797904fb2ee946d401d65cfd2967ef7f500ebf3b691b
MD5 036e0a8b384efbdacdbfb250bebf68e0
BLAKE2b-256 a8de792a85e82279433e7ec81fbd4a15856b23a733cd835835cc0b7d47708f15

See more details on using hashes here.

File details

Details for the file dtw_python-1.5.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dtw_python-1.5.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7f62e0a425b66c9188266f3b29c4073c90307b1580903cc887602e83b4382f48
MD5 216bbec5e6474ed0908b165555b9ff1c
BLAKE2b-256 febdec1cdd74bf9782f93175e7157d32ca891fff48f616bc962ffe096cbf7bbe

See more details on using hashes here.

File details

Details for the file dtw_python-1.5.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for dtw_python-1.5.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 22583f33541afe81419b7f4b2872eaa184c80dfce76515ac24e78b51b116f394
MD5 634d0c6866505ec2aa93f898c7b3d12b
BLAKE2b-256 f69e38a68f966e93e8941738e4d355125d04165ad44ff28765368d4ed40113ae

See more details on using hashes here.

File details

Details for the file dtw_python-1.5.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: dtw_python-1.5.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 374.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.5

File hashes

Hashes for dtw_python-1.5.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 76af75797822154635ac793cb9f07ffab1d3afa0b5f417171418030cb318a0f2
MD5 bbdacc4dea4bab49ca49319edacfa44d
BLAKE2b-256 305369d2daec672eb256d1181565ac6a457bac488b49ed6d319fc56f9e64db23

See more details on using hashes here.

File details

Details for the file dtw_python-1.5.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dtw_python-1.5.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f521c7cab39ae6b550533e589eb5a33c6c4c2f096eb70a99a18c677f35576d1f
MD5 8673fca7ba8e140a0eeb458e33816949
BLAKE2b-256 cd5c7f785b912f06fdcd8bd7693ac6309f8ae869670aa00a206bae82294dd412

See more details on using hashes here.

File details

Details for the file dtw_python-1.5.3-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dtw_python-1.5.3-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cd7eeffb41cc94ddf9c052efbd3a1bb4039217ccbcb1765770a31ee851d9eed0
MD5 88f3fa7ecd732c183c9fb5f241fac2e8
BLAKE2b-256 8a424ebc03127e6bb218ed7cfed956fa57875071d3ec479fc9cf77ebfdece005

See more details on using hashes here.

File details

Details for the file dtw_python-1.5.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for dtw_python-1.5.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d1f14a2e9612371f6bb24b5f9696fdefb840d7d99c2d370201099f03bfb717e7
MD5 10c7ceb494aa85ebe9737a45839a39fd
BLAKE2b-256 93d8447cfbeafbb7beffc1b118c089e53dcc50f93f65ca6eaf361e203e6fa180

See more details on using hashes here.

File details

Details for the file dtw_python-1.5.3-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for dtw_python-1.5.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 eb96f63316c3bc7f95ec75a31671e13d00056580934680f3fed16750e01958e6
MD5 a56219cc579f68f388c92063bcd3d339
BLAKE2b-256 240fae3bbfd008a0d726e56b39ed17e8abb6c3bcfe9d3106d149b9edfcebe10d

See more details on using hashes here.

File details

Details for the file dtw_python-1.5.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dtw_python-1.5.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aa3846e1e5e72ef68ea51138973b00858cc386db3b6f73bc95b6c29624d7506a
MD5 d27195d608049d5f4b5151d0cad3d11b
BLAKE2b-256 93262518489079e1a3a94722930308f5b6875ad9afcb2fcfb5e597d039e63aed

See more details on using hashes here.

File details

Details for the file dtw_python-1.5.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for dtw_python-1.5.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 54da8c37c3955e11f305898809ba3ea768478d3de708bc141efc6c7e1f55bb3c
MD5 566d2fe585f750980f8aa73b856ce8a2
BLAKE2b-256 8fc366b81c9d133b137c1792a57d0216d72b62fd12dcc1381b467a6f9935eb7b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page