Skip to main content

A comprehensive implementation of dynamic time warping (DTW) algorithms. DTW computes the optimal (least cumulative distance) alignment between points of two time series. Common DTW variants covered include local (slope) and global (window) constraints, subsequence matches, arbitrary distance definitions, normalizations, minimum variance matching, and so on. Provides cumulative distances, alignments, specialized plot styles, etc.

Project description

Comprehensive implementation of Dynamic Time Warping algorithms.

DTW is a family of algorithms which compute the local stretch or compression to apply to the time axes of two timeseries in order to optimally map one (query) onto the other (reference). DTW outputs the remaining cumulative distance between the two and, if desired, the mapping itself (warping function). DTW is widely used e.g. for classification and clustering tasks in econometrics, chemometrics and general timeseries mining.

This package provides the most complete, freely-available (GPL) implementation of Dynamic Time Warping-type (DTW) algorithms up to date. It is a faithful Python equivalent of R’s DTW package on CRAN. Supports arbitrary local (e.g. symmetric, asymmetric, slope-limited) and global (windowing) constraints, fast native code, several plot styles, and more.

Documentation

Please refer to the main DTW project homepage for the full documentation and background.

The best place to learn how to use the package (and a hopefully a decent deal of background on DTW) is the companion paper Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw Package, which the Journal of Statistical Software makes available for free. It includes detailed instructions and extensive background on things like multivariate matching, open-end variants for real-time use, interplay between recursion types and length normalization, history, etc.

To have a look at how the dtw package is used in domains ranging from bioinformatics to chemistry to data mining, have a look at the list of citing papers.

Links to prebuilt documentation are available for R and Python.

Note: R is the preferred environment for the DTW project. Python’s docstrings and the API below are generated automatically for the sake of consistency and maintainability, and may not be as pretty.

Features

The implementation provides:

  • arbitrary windowing functions (global constraints), eg. the Sakoe-Chiba band and the Itakura parallelogram;

  • arbitrary transition types (also known as step patterns, slope constraints, local constraints, or DP-recursion rules). This includes dozens of well-known types:

  • partial matches: open-begin, open-end, substring matches

  • proper, pattern-dependent, normalization (exact average distance per step)

  • the Minimum Variance Matching (MVM) algorithm (Latecki et al.)

Multivariate timeseries can be aligned with arbitrary local distance definitions, leveraging the {proxy}dist function. DTW itself becomes a distance function with the dist semantics.

In addition to computing alignments, the package provides:

  • methods for plotting alignments and warping functions in several classic styles (see plot gallery);

  • graphical representation of step patterns;

  • functions for applying a warping function, either direct or inverse;

  • a fast native (C) core.

Citation

When using in academic works please cite:

    1. Giorgino. Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw Package. J. Stat. Soft., 31 (2009) doi:10.18637/jss.v031.i07.

When using partial matching (unconstrained endpoints via the open.begin/open.end options) and/or normalization strategies, please also cite:

    1. Tormene, T. Giorgino, S. Quaglini, M. Stefanelli (2008). Matching Incomplete Time Series with Dynamic Time Warping: An Algorithm and an Application to Post-Stroke Rehabilitation. Artificial Intelligence in Medicine, 45(1), 11-34. doi:10.1016/j.artmed.2008.11.007

License

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>.

Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dtw-python-1.0.0.tar.gz (255.8 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

dtw_python-1.0.0-cp36-cp36m-macosx_10_7_x86_64.whl (312.7 kB view details)

Uploaded CPython 3.6mmacOS 10.7+ x86-64

File details

Details for the file dtw-python-1.0.0.tar.gz.

File metadata

  • Download URL: dtw-python-1.0.0.tar.gz
  • Upload date:
  • Size: 255.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.9

File hashes

Hashes for dtw-python-1.0.0.tar.gz
Algorithm Hash digest
SHA256 a47008892aa22077643da101097cb3d4e766ca99595d298fb853ca0b0462967b
MD5 4b897ade93c42a05ea1f1e277bde147c
BLAKE2b-256 e8e7ad29ece93163081050ae9e41e09050c0af54651527e2c829ab18e68bf5ab

See more details on using hashes here.

File details

Details for the file dtw_python-1.0.0-cp36-cp36m-macosx_10_7_x86_64.whl.

File metadata

  • Download URL: dtw_python-1.0.0-cp36-cp36m-macosx_10_7_x86_64.whl
  • Upload date:
  • Size: 312.7 kB
  • Tags: CPython 3.6m, macOS 10.7+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.9

File hashes

Hashes for dtw_python-1.0.0-cp36-cp36m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 82de21c35f588996e85416ab52ef9eae04fe854c2f3f413781eade229800cdc7
MD5 0786b2656e9dc1a8d92b03bec6c23c7e
BLAKE2b-256 e1a5ae47811ab98e1a02e330f15953200ea480599e03a16a62aea5c34e1dffcb

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page