Skip to main content

Codes to perform Dynamic Time Warping Based Hierarchical Agglomerative Clustering of GPS data

Project description

Dynamic Time Warping based Hierarchical Agglomerative Clustering

Codes to perform Dynamic Time Warping Based Hierarchical Agglomerative Clustering of GPS data

Documentation

Installation and usage information can be obtained from the documentation: dtwhaclustering.pdf

Complete documentation at: dtwhaclustering-docs

Details

This package include codes for processing the GPS displacement data including least-square modelling for trend, co-seismic jumps, seasonal and tidal signals. Finally, it can be used to cluster the GPS displacements based on the similarity of the waveforms. The similarity among the waveforms will be obtained using the DTW distance.

Usage

Least-squares modeling

Load Pickle Data into Pandas DataFrame

from dtwhaclustering.leastSquareModeling import lsqmodeling
final_dU, final_dN, final_dE = lsqmodeling(dUU, dNN, dEE,stnlocfile="helper_files/stn_loc.txt",  plot_results=True, remove_trend=False, remove_seasonality=True, remove_jumps=False)

LSQ Model

Plot station map

from dtwhaclustering import plot_stations
plot_stations.plot_station_map(station_data = 'helper_files/selected_stations_info.txt', outfig=f'{outloc}/station_map.pdf')

Plot linear trend

slopeFile=f'stn_slope_res_U.txt'
df = pd.read_csv(slopeFile, names=['stn','lon','lat','slope'], delimiter='\s+')
plot_linear_trend_on_map(df, outfig=f"Maps/slope-plot_U.pdf")

Note: slopeFile is obtained from lsqmodeling.

Dynamic Time Warping Analysis

from dtwhaclustering.dtw_analysis import dtw_signal_pairs, dtw_clustering
import numpy as np
from scipy import signal
import matplotlib.pyplot as plt

np.random.seed(0)
# sampling parameters
fs = 100   # sampling rate, in Hz
T = 1      # duration, in seconds
N = T * fs  # duration, in samples

# time variable
t = np.linspace(0, T, N)

SNR = 0.2 #noise

XX0 = np.sin(2 * np.pi * t * 7+np.pi/2) #+ np.random.randn(1, N) * SNR
XX1 = signal.sawtooth(2 * np.pi * t * 5+np.pi/2) #+ np.random.randn(1, N) * SNR
# XX1 = np.abs(np.cos(2 * np.pi * t * 3)) - 0.5
s1, s2 = XX0, XX1

dtwsig = dtw_signal_pairs(s1, s2, labels=['S1', 'S2'])

dtwsig.plot_signals()
plt.show()
dtwsig.plot_matrix(windowfrac=0.6, psi=None) #Only allow for shifts up to 60% of the minimum signal length away from the two diagonals.
plt.show()

References

  1. Kumar, U., Chao, B.F., Chang, E.T.-Y.Y., 2020. What Causes the Common‐Mode Error in Array GPS Displacement Fields: Case Study for Taiwan in Relation to Atmospheric Mass Loading. Earth Sp. Sci. 0–2. https://doi.org/10.1029/2020ea001159

License

© 2021 Utpal Kumar

Licensed under the Apache License, Version 2.0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dtwhaclustering-1.0.15.tar.gz (26.8 kB view details)

Uploaded Source

Built Distribution

dtwhaclustering-1.0.15-py3-none-any.whl (28.2 kB view details)

Uploaded Python 3

File details

Details for the file dtwhaclustering-1.0.15.tar.gz.

File metadata

  • Download URL: dtwhaclustering-1.0.15.tar.gz
  • Upload date:
  • Size: 26.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for dtwhaclustering-1.0.15.tar.gz
Algorithm Hash digest
SHA256 cf47d788620b97fe1dd997f9698004bac4abd53def2581597ef6f3b630f3b14d
MD5 3dc666e2e4f80104500192ef7c9f9f1a
BLAKE2b-256 27fbf3f74ba67b2027b648a7acfdf6ea9ac839b4a2768e0f6944d7954cc6473d

See more details on using hashes here.

File details

Details for the file dtwhaclustering-1.0.15-py3-none-any.whl.

File metadata

  • Download URL: dtwhaclustering-1.0.15-py3-none-any.whl
  • Upload date:
  • Size: 28.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for dtwhaclustering-1.0.15-py3-none-any.whl
Algorithm Hash digest
SHA256 986dbad37b18367e7b1ae841184ab84ebdb91e449ff78d6dffec0e27e01e522b
MD5 d3988c7ea9677d39fed415eb3bc2a3cf
BLAKE2b-256 dcf794224e0db0cbc619d567eecfcbf0d3e757aed984deac7a0b60c474e4d92f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page