Skip to main content

Codes to perform Dynamic Time Warping Based Hierarchical Agglomerative Clustering of GPS data

Project description

Dynamic Time Warping based Hierarchical Agglomerative Clustering

Codes to perform Dynamic Time Warping Based Hierarchical Agglomerative Clustering of GPS data

Documentation

Installation and usage information can be obtained from the documentation: dtwhaclustering.pdf

Complete documentation at: dtwhaclustering-docs

Details

This package include codes for processing the GPS displacement data including least-square modelling for trend, co-seismic jumps, seasonal and tidal signals. Finally, it can be used to cluster the GPS displacements based on the similarity of the waveforms. The similarity among the waveforms will be obtained using the DTW distance.

Usage

Least-squares modeling

Load Pickle Data into Pandas DataFrame

from dtwhaclustering.leastSquareModeling import lsqmodeling
final_dU, final_dN, final_dE = lsqmodeling(dUU, dNN, dEE,stnlocfile="helper_files/stn_loc.txt",  plot_results=True, remove_trend=False, remove_seasonality=True, remove_jumps=False)

LSQ Model

Plot station map

from dtwhaclustering import plot_stations
plot_stations.plot_station_map(station_data = 'helper_files/selected_stations_info.txt', outfig=f'{outloc}/station_map.pdf')

Plot linear trend

slopeFile=f'stn_slope_res_U.txt'
df = pd.read_csv(slopeFile, names=['stn','lon','lat','slope'], delimiter='\s+')
plot_linear_trend_on_map(df, outfig=f"Maps/slope-plot_U.pdf")

Note: slopeFile is obtained from lsqmodeling.

Dynamic Time Warping Analysis

from dtwhaclustering.dtw_analysis import dtw_signal_pairs, dtw_clustering
import numpy as np
from scipy import signal
import matplotlib.pyplot as plt

np.random.seed(0)
# sampling parameters
fs = 100   # sampling rate, in Hz
T = 1      # duration, in seconds
N = T * fs  # duration, in samples

# time variable
t = np.linspace(0, T, N)

SNR = 0.2 #noise

XX0 = np.sin(2 * np.pi * t * 7+np.pi/2) #+ np.random.randn(1, N) * SNR
XX1 = signal.sawtooth(2 * np.pi * t * 5+np.pi/2) #+ np.random.randn(1, N) * SNR
# XX1 = np.abs(np.cos(2 * np.pi * t * 3)) - 0.5
s1, s2 = XX0, XX1

dtwsig = dtw_signal_pairs(s1, s2, labels=['S1', 'S2'])

dtwsig.plot_signals()
plt.show()
dtwsig.plot_matrix(windowfrac=0.6, psi=None) #Only allow for shifts up to 60% of the minimum signal length away from the two diagonals.
plt.show()

References

  1. Kumar, U., Chao, B.F., Chang, E.T.-Y.Y., 2020. What Causes the Common‐Mode Error in Array GPS Displacement Fields: Case Study for Taiwan in Relation to Atmospheric Mass Loading. Earth Sp. Sci. 0–2. https://doi.org/10.1029/2020ea001159

License

© 2021 Utpal Kumar

Licensed under the Apache License, Version 2.0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dtwhaclustering-1.0.10.tar.gz (26.8 kB view details)

Uploaded Source

Built Distribution

dtwhaclustering-1.0.10-py3-none-any.whl (28.4 kB view details)

Uploaded Python 3

File details

Details for the file dtwhaclustering-1.0.10.tar.gz.

File metadata

  • Download URL: dtwhaclustering-1.0.10.tar.gz
  • Upload date:
  • Size: 26.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for dtwhaclustering-1.0.10.tar.gz
Algorithm Hash digest
SHA256 b6153dc187095684eae07a9d343aeb3220febd614766536fe8ebdb29a735f644
MD5 214a1cb982821f4b53e9aa24ef5a368c
BLAKE2b-256 8483cae9689114df7f51e5f39de91c0a2e56594ab7cf56c3199259b651b8e095

See more details on using hashes here.

File details

Details for the file dtwhaclustering-1.0.10-py3-none-any.whl.

File metadata

  • Download URL: dtwhaclustering-1.0.10-py3-none-any.whl
  • Upload date:
  • Size: 28.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for dtwhaclustering-1.0.10-py3-none-any.whl
Algorithm Hash digest
SHA256 0849456a245d0a6ed70d4eca173775c1fa063da95541ccd5a3fde65c76ef1ac6
MD5 9b04c114003c734fc54d76696f4f1a2e
BLAKE2b-256 7433783b0c6b142b79fd828845ccc7d0eedfeb5dd9870045edfff8f56fd642ae

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page