Skip to main content

Codes to perform Dynamic Time Warping Based Hierarchical Agglomerative Clustering of GPS data

Project description

Dynamic Time Warping based Hierarchical Agglomerative Clustering

Codes to perform Dynamic Time Warping Based Hierarchical Agglomerative Clustering of GPS data

Documentation

Installation and usage information can be obtained from the documentation: dtwhaclustering.pdf

Complete documentation at: dtwhaclustering-docs

Details

This package include codes for processing the GPS displacement data including least-square modelling for trend, co-seismic jumps, seasonal and tidal signals. Finally, it can be used to cluster the GPS displacements based on the similarity of the waveforms. The similarity among the waveforms will be obtained using the DTW distance.

Usage

Least-squares modeling

Load Pickle Data into Pandas DataFrame

from dtwhaclustering.leastSquareModeling import lsqmodeling
final_dU, final_dN, final_dE = lsqmodeling(dUU, dNN, dEE,stnlocfile="helper_files/stn_loc.txt",  plot_results=True, remove_trend=False, remove_seasonality=True, remove_jumps=False)

LSQ Model

Plot station map

from dtwhaclustering import plot_stations
plot_stations.plot_station_map(station_data = 'helper_files/selected_stations_info.txt', outfig=f'{outloc}/station_map.pdf')

Plot linear trend

slopeFile=f'stn_slope_res_U.txt'
df = pd.read_csv(slopeFile, names=['stn','lon','lat','slope'], delimiter='\s+')
plot_linear_trend_on_map(df, outfig=f"Maps/slope-plot_U.pdf")

Note: slopeFile is obtained from lsqmodeling.

Dynamic Time Warping Analysis

from dtwhaclustering.dtw_analysis import dtw_signal_pairs, dtw_clustering
import numpy as np
from scipy import signal
import matplotlib.pyplot as plt

np.random.seed(0)
# sampling parameters
fs = 100   # sampling rate, in Hz
T = 1      # duration, in seconds
N = T * fs  # duration, in samples

# time variable
t = np.linspace(0, T, N)

SNR = 0.2 #noise

XX0 = np.sin(2 * np.pi * t * 7+np.pi/2) #+ np.random.randn(1, N) * SNR
XX1 = signal.sawtooth(2 * np.pi * t * 5+np.pi/2) #+ np.random.randn(1, N) * SNR
# XX1 = np.abs(np.cos(2 * np.pi * t * 3)) - 0.5
s1, s2 = XX0, XX1

dtwsig = dtw_signal_pairs(s1, s2, labels=['S1', 'S2'])

dtwsig.plot_signals()
plt.show()
dtwsig.plot_matrix(windowfrac=0.6, psi=None) #Only allow for shifts up to 60% of the minimum signal length away from the two diagonals.
plt.show()

References

  1. Kumar, U., Chao, B.F., Chang, E.T.-Y.Y., 2020. What Causes the Common‐Mode Error in Array GPS Displacement Fields: Case Study for Taiwan in Relation to Atmospheric Mass Loading. Earth Sp. Sci. 0–2. https://doi.org/10.1029/2020ea001159

License

© 2021 Utpal Kumar

Licensed under the Apache License, Version 2.0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dtwhaclustering-1.0.13.tar.gz (26.8 kB view details)

Uploaded Source

Built Distribution

dtwhaclustering-1.0.13-py3-none-any.whl (28.2 kB view details)

Uploaded Python 3

File details

Details for the file dtwhaclustering-1.0.13.tar.gz.

File metadata

  • Download URL: dtwhaclustering-1.0.13.tar.gz
  • Upload date:
  • Size: 26.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for dtwhaclustering-1.0.13.tar.gz
Algorithm Hash digest
SHA256 82c3f8d94de03adcef012cf7480f7a3ecc1d7b4ee4d6ecbf3053eb076b97f5fe
MD5 b53ec34edcbbbbfdd99cc405534a768e
BLAKE2b-256 34496bba42f3343385d38bb302200cdb74df7288219c108e9c073fe78fb441f1

See more details on using hashes here.

File details

Details for the file dtwhaclustering-1.0.13-py3-none-any.whl.

File metadata

  • Download URL: dtwhaclustering-1.0.13-py3-none-any.whl
  • Upload date:
  • Size: 28.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for dtwhaclustering-1.0.13-py3-none-any.whl
Algorithm Hash digest
SHA256 54888d93c20d0219b01379f87b7904ab2d0ab93282165e2ada95fa9b6232c2a0
MD5 f4874b482d09519aaef54f969daa0e4e
BLAKE2b-256 3f241b23e9275144a91f54bdc9f01b2d31ddaf28f085fb20d93aaa6493252dbf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page