Categorical variable friendly pandas data frames
Project description
Quickstart
$ pip install dummipy
Let it out of the box…
from sklearn.linear_model import LinearRegression from dummipy import cereal type(cereal) # CategoricalDataFrame cereal.head() reg = LinearRegression() reg.fit(cereal[['mfr', 'vitamins', 'fat']], cereal.calories)
Installation
You’ll need `pandas <http://pandas.pydata.org/>`__, but any old version will do the trick. There is no pandas version pegged in the setup.py file so installing dummipy won’t mess up your existing sci-py setup.
$ pip install dummipy
Use
Just use it like any old data frame. That’s really all there is to it.
import dummipy as dp df = dp.CategoricalDataFrame({ "x": range(5), "y": ["a", "b", "c", "a", "b"] }) df = pd.read_csv("foo.csv") df = dp.CategoricalDataFrame(df)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
dummipy-0.0.1.tar.gz
(5.7 kB
view details)
Built Distribution
dummipy-0.0.1-py2.7.egg
(8.9 kB
view details)
File details
Details for the file dummipy-0.0.1.tar.gz
.
File metadata
- Download URL: dummipy-0.0.1.tar.gz
- Upload date:
- Size: 5.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fdc932d454f28fc1dba01428acd67a6a7562cd02b37ef78a3fdf8b51d86bb982 |
|
MD5 | 814bf4327c5a16472dddeca81a277c5a |
|
BLAKE2b-256 | e1eff803fadb53a33bd1796e889ff9733728d1a71a1988f6e8ce81f4d08baa27 |
File details
Details for the file dummipy-0.0.1-py2.7.egg
.
File metadata
- Download URL: dummipy-0.0.1-py2.7.egg
- Upload date:
- Size: 8.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2485a9cc1a75170051ffd9fa53869a4e8607a881b71ba62a6cf70e2aacb4b562 |
|
MD5 | 2910314d9087f4e396075f87f866a543 |
|
BLAKE2b-256 | 3fe8bdc53fa9933f9c5dfb1e396999724c539902e6bcfcfef299d6ccd9b813db |