Skip to main content
This is a pre-production deployment of Warehouse. Changes made here affect the production instance of PyPI (
Help us improve Python packaging - Donate today!

Categorical variable friendly pandas data frames

Project Description


$ pip install dummipy

Let it out of the box…

from sklearn.linear_model import LinearRegression
from dummipy import cereal

# CategoricalDataFrame

reg = LinearRegression()[['mfr', 'vitamins', 'fat']], cereal.calories)


You’ll need `pandas <>`__, but any old version will do the trick. There is no pandas version pegged in the file so installing dummipy won’t mess up your existing sci-py setup.

$ pip install dummipy


Just use it like any old data frame. That’s really all there is to it.

import dummipy as dp

df = dp.CategoricalDataFrame({
    "x": range(5),
    "y": ["a", "b", "c", "a", "b"]

df = pd.read_csv("foo.csv")
df = dp.CategoricalDataFrame(df)

Release History

This version
History Node


Download Files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, Size & Hash SHA256 Hash Help File Type Python Version Upload Date
(8.9 kB) Copy SHA256 Hash SHA256
Egg 2.7 May 18, 2015
(5.7 kB) Copy SHA256 Hash SHA256
Source None May 18, 2015

Supported By

Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Google Google Cloud Servers DreamHost DreamHost Log Hosting