Skip to main content

Finds equal or similar images in a directory containing (many) image files

Project description

Finding Duplicate Images

Finds equal or similar images in a directory containing (many) image files.

Official home page: https://github.com/lene/DuplicateImages

Development page: https://gitlab.com/lilacashes/DuplicateImages

PyPI page: https://pypi.org/project/duplicate-images/0.6.0

Usage

Installing:

$ pip install duplicate_images

Printing the help screen:

$ find-dups -h

Quick test run:

$ find-dups $IMAGE_ROOT 

Typical usage:

$ find-dups $IMAGE_ROOT --parallel --progress --hash-db hashes.pickle

Supported image formats

  • JPEG and PNG (tested quite thoroughly)
  • HEIC (experimental support, tested cursorily only)

Image comparison algorithms

Use the --algorithm option to select how equal images are found. The default algorithm is phash.

ahash, colorhash, dhash, phash, whash: five different image hashing algorithms. See https://pypi.org/project/ImageHash for an introduction on image hashing and https://tech.okcupid.com/evaluating-perceptual-image-hashes-okcupid for some gory details which image hashing algorithm performs best in which situation. For a start I recommend using phash, and only evaluating the other algorithms if phash does not perform satisfactorily in your use case.

Image similarity threshold configuration

Use the --max-distance parameter to tune how close images should be to be considered duplicates. The argument is a positive integer. Its value is highly dependent on the algorithm used and the nature of the images compared, so the best value for your use case can oly be found through experimentation.

Actions for matching image pairs

Use the --on-equal option to select what to do to pairs of equal images. The default action is print.

  • delete-first or d1: deletes the first of the two files
  • delete-second or d2: deletes the second of the two files
  • delete-bigger or d>: deletes the file with the bigger size
  • delete-smaller or d<: deletes the file with the smaller size
  • eog: launches the eog image viewer to compare the two files
  • xv: launches the xv image viewer to compare the two files
  • print: prints the two files
  • quote: prints the two files with quotes around each
  • none: does nothing.

Parallel execution

Use the --parallel option to utilize all free cores on your system.

Progress and verbosity control

  • --progress prints a progress bar each for the process of reading the images, and the process of finding duplicates among the scanned image
  • --debug prints debugging output
  • --quiet decreases the log level by 1 for each time it is called; --debug and --quiet cancel each other out

Pre-storing and using image hashes to speed up computation

Use the --hash-db $PICKLE_FILE option to store image hashes in the file $PICKLE_FILE and read image hashes from that file if they are already present there. This avoids having to compute the image hashes anew at every run and can significantly speed up run times.

Development notes

Needs Python3, Pillow imaging library and pillow-heif HEIF plugin to run, additionally Wand for the test suite.

Uses Poetry for dependency management.

Installation

From source:

$ git clone https://gitlab.com/lilacashes/DuplicateImages.git
$ cd DuplicateImages
$ pip3 install poetry
$ poetry install

Running

$ poetry run find-dups $PICTURE_DIR

or

$ poetry run find-dups -h

for a list of all possible options.

Test suite

Running it all:

$ poetry run pytest
$ poetry run mypy duplicate_images tests
$ poetry run flake8
$ poetry run pylint duplicate_images tests

or simply

$ .git_hooks/pre-push

Setting the test suite to be run before every push:

$ cd .git/hooks
$ ln -s ../../.git_hooks/pre-push .

Publishing

There is a job in GitLab CI for publishing to pypi.org that runs as soon as a new tag is added. The tag needs to be the same as the version in the pyproject.toml file or else the job will fail.

To publish the package on PyPI manually:

$ poetry config repositories.testpypi https://test.pypi.org/legacy/
$ poetry build
$ poetry publish --username $PYPI_USER --password $PYPI_PASSWORD --repository testpypi && \
  poetry publish --username $PYPI_USER --password $PYPI_PASSWORD

(obviously assuming that username and password are the same on PyPI and TestPyPI)

Updating GitHub mirror

GitHub is set up as a push mirror in GitLab CI, but mirroring is flaky at the time and may not succeed.

To push to the GitHub repository manually (assuming the GitHub repository is set up as remote github):

$ git checkout master
$ git fetch
$ git pull --rebase
$ git tag  # to check that the latest tag is present
$ git push --tags github master 

Profiling

CPU time

To show the top functions by time spent, including called functions:

$ poetry run python -m cProfile -s tottime ./duplicate_images/duplicate.py \ 
    --algorithm $ALGORITHM --action-equal none $IMAGE_DIR 2>&1 | head -n 15

or, to show the top functions by time spent in the function alone:

$ poetry run python -m cProfile -s cumtime ./duplicate_images/duplicate.py \ 
    --algorithm $ALGORITHM --action-equal none $IMAGE_DIR 2>&1 | head -n 15

Memory usage

$ poetry run fil-profile run ./duplicate_images/duplicate.py \
    --algorithm $ALGORITHM --action-equal none $IMAGE_DIR 2>&1

This will open a browser window showing the functions using the most memory (see https://pypi.org/project/filprofiler for more details).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

duplicate_images-0.6.2.tar.gz (11.3 kB view details)

Uploaded Source

Built Distribution

duplicate_images-0.6.2-py3-none-any.whl (11.6 kB view details)

Uploaded Python 3

File details

Details for the file duplicate_images-0.6.2.tar.gz.

File metadata

  • Download URL: duplicate_images-0.6.2.tar.gz
  • Upload date:
  • Size: 11.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.2.0 CPython/3.9.13 Linux/5.4.109+

File hashes

Hashes for duplicate_images-0.6.2.tar.gz
Algorithm Hash digest
SHA256 cb195af738b7d417fc3e081d43ebba2af1afa5943f655260858b4ffeea1a7fcf
MD5 a9cee96ae49853b0b02e6dafb3bc4c71
BLAKE2b-256 16e4784a108b794bdce0ce5c2fcafb910e283123a2bf9e436271f07396a2db77

See more details on using hashes here.

File details

Details for the file duplicate_images-0.6.2-py3-none-any.whl.

File metadata

File hashes

Hashes for duplicate_images-0.6.2-py3-none-any.whl
Algorithm Hash digest
SHA256 34ea789e747bed1eb7c248969a786c10b7573284e93d061ce65eccf1462b8dd7
MD5 1914f38fd3626a3910b8dddebc8534af
BLAKE2b-256 18cbb9ffcfc922d9d68295a7cc17d96332ca966dfb2d3145cc904d204a031973

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page