Skip to main content

Git for data scientists - manage your code and data together

Project description

https://img.shields.io/travis/iterative/dvc/master.svg?label=Linux%20%26%20Mac%20OS https://img.shields.io/appveyor/ci/iterative/dvc/master.svg?label=Windows https://codeclimate.com/github/iterative/dvc/badges/gpa.svg https://codecov.io/gh/iterative/dvc/branch/master/graph/badge.svg

Data Version Control or DVC is an open source tool for data science projects. It helps data scientists manage their code and data together in a simple form of Git-like commands.

Get started

Step

Command

Track code and data together

$ git add train.py
$ dvc add images.zip

Connect code and data by commands

$ dvc run -d images.zip -o images/ unzip -q images.zip
$ dvc run -d images/ -d train.py -o model.p python train.py

Make changes and reproduce

$ vi train.py
$ dvc repro model.p.dvc

Share code

$ git add .
$ git commit -m 'The baseline model'
$ git push

Share data and ML models

$ dvc remote add myremote s3://mybucket/image_cnn
$ dvc core.remote myremote
$ dvc push

See more in tutorial.

Installation

Packages

Operating system dependent packages are the recommended way to install DVC. The latest version of the packages can be found at GitHub releases page: https://github.com/iterative/dvc/releases

Python Pip

DVC could be installed via the Python Package Index (PyPI).

pip install dvc

Homebrew (Mac OS)

Formula:

brew install iterative/homebrew-dvc/dvc

Cask:

brew cask install iterative/homebrew-dvc/dvc

How DVC works

how_dvc_works

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

dvc-0.14.0-py2.py3-none-any.whl (65.5 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file dvc-0.14.0-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for dvc-0.14.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 fe11d0c5399df7614d7f73a3bf113c985e6099c7a45473f14a9db960d1f33786
MD5 b932d2789e351bf8c44e6746c3c94437
BLAKE2b-256 555e02e0822adbed0efcc40957cdcc20cc25e4a38bb41ef917efcd7de4dc8209

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page