Skip to main content

Git for data scientists - manage your code and data together

Project description

DVC logo

WebsiteDocsTwitterChat (Community & Support)TutorialMailing List

Travis Windows Build Code Climate Codecov

Data Science Version Control or DVC is an open-source tool for data science and machine learning projects. With a simple and flexible Git-like architecture and interface it helps data scientists:

  1. manage machine learning models - versioning, including data sets and transformations (scripts) that were used to generate models;

  2. make projects reproducible;

  3. make projects shareable;

  4. manage experiments with branching and metrics tracking;

It aims to replace tools like Excel and Docs that are being commonly used as a knowledge repo and a ledger for the team, ad-hoc scripts to track and move deploy different model versions, ad-hoc data file suffixes and prefixes.

How DVC works

DVC is compatible with Git for storing code and the dependency graph (DAG), but not data files cache. To store and share data files cache DVC supports remotes - any cloud (S3, Azure, Google Cloud, etc) or any on-premise network storage (via SSH, for example).

how_dvc_works

Quick start

Please read Get Started for the full version. Common workflow commands include:

Step

Command

Track code and data together

$ git add train.py
$ dvc add images.zip

Connect code and data by commands

$ dvc run -d images.zip -o images/ unzip -q images.zip
$ dvc run -d images/ -d train.py -o model.p python train.py

Make changes and reproduce

$ vi train.py
$ dvc repro model.p.dvc

Share code

$ git add .
$ git commit -m 'The baseline model'
$ git push

Share data and ML models

$ dvc remote add myremote s3://mybucket/image_cnn
$ dvc config core.remote myremote
$ dvc push

Installation

There are three options to install DVC: pip, Homebrew, or an OS-specific package:

pip (PyPI)

Stable

pip install dvc

Development

pip install git+git://github.com/iterative/dvc

Homebrew

brew install iterative/homebrew-dvc/dvc

or:

brew cask install iterative/homebrew-dvc/dvc

Package

Self-contained packages for Windows, Linux, Mac are available. The latest version of the packages can be found at GitHub releases page.

Ubuntu / Debian (apt)

sudo wget https://dvc.org/deb/dvc.list -O /etc/apt/sources.list.d/dvc.list
sudo apt-get update
sudo apt-get install dvc

Fedora / CentOS (rpm)

sudo wget https://dvc.org/rpm/dvc.repo -O /etc/yum.repos.d/dvc.repo
sudo yum update
sudo yum install dvc

Arch linux (AUR)

Unofficial package, any inquiries regarding the AUR package, refer to the maintainer.

yay -S dvc

Contributing

Contributions are welcome! Please see our Contributing Guide for more details.

0 1 2 3 4 5 6 7

Mailing List

Want to stay up to date? Want to help improve DVC by participating in our occasional polls? Subscribe to our mailing list. No spam, really low traffic.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dvc-0.34.1.tar.gz (109.6 kB view details)

Uploaded Source

Built Distribution

dvc-0.34.1-py2.py3-none-any.whl (155.9 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file dvc-0.34.1.tar.gz.

File metadata

  • Download URL: dvc-0.34.1.tar.gz
  • Upload date:
  • Size: 109.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.9.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/2.7.15rc1

File hashes

Hashes for dvc-0.34.1.tar.gz
Algorithm Hash digest
SHA256 1427ffdbd285634c435055f5eb77e3c3e994c6db1786596a6750efe1ef756791
MD5 648123dc2e90d0f8681ec9a22232c794
BLAKE2b-256 843fd36138801df65576b62d4594a6a183a80a2ef2f0298e689fa7fd0ef08328

See more details on using hashes here.

File details

Details for the file dvc-0.34.1-py2.py3-none-any.whl.

File metadata

  • Download URL: dvc-0.34.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 155.9 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.9.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/2.7.15rc1

File hashes

Hashes for dvc-0.34.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 129a2bb4e1ca83b2fdc8610489d2ed6d51083ae1c1f3e8671dd7bc75178ea2e3
MD5 cb21e5e8e2c9a626bc76dd8a4ae036d8
BLAKE2b-256 a9b6c32c369d4a4b43f25b4db657ec25a7bcae773ed50ad5757916c5b28df9fd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page