Skip to main content

Git for data scientists - manage your code and data together

Project description

| Linux & Mac OS | Windows | Code quality | Unit-tests |
|-------------|---------------|--------------|------------|
|[![Build Status](https://travis-ci.org/dataversioncontrol/dvc.svg?branch=master)](https://travis-ci.org/dataversioncontrol/dvc)|[![Build status](https://ci.appveyor.com/api/projects/status/rnqygb4rp1tsjvhb/branch/master?svg=true)](https://ci.appveyor.com/project/dataversioncontrol/dvc/branch/master)|[![Code Climate](https://codeclimate.com/github/dataversioncontrol/dvc/badges/gpa.svg)](https://codeclimate.com/github/dataversioncontrol/dvc)|[![Test Coverage](https://codeclimate.com/github/dataversioncontrol/dvc/badges/coverage.svg)](https://codeclimate.com/github/dataversioncontrol/dvc)|

Data Version Control or DVC is an open source tool for data science projects.
It helps data scientists manage their code and data together in a simple form of Git-like commands.

# Get started

|Step|Command|
|----|-------|
|Track code and data together|`$ git add train.py` <br /> `$ dvc add images.zip` |
|Connect code and data by commands| `$ dvc run -d images.zip -o images/ unzip -q images.zip` <br /> `$ dvc run -d images/ -d train.py -o model.p python train.py` |
|Make changes and reproduce|`$ vi train.py` <br /> `$ dvc repro model.p.dvc` |
|Share code|`$ git add .` <br /> `$ git commit -m 'The baseline model'` <br /> `$ git push`|
|Share data and ML models|`$ dvc config AWS.StoragePath mybucket/image_cnn` <br/> `$ dvc push`|

See more in [tutorial](https://blog.dataversioncontrol.com/data-version-control-tutorial-9146715eda46).

# Installation

## Packages

Operating system dependent packages are the recommended way to install DVC.
The latest version of the packages can be found at GitHub releases page: https://github.com/dataversioncontrol/dvc/releases

## Python Pip

DVC could be installed via the Python Package Index (PyPI).

```bash
pip install dvc
```

## Homebrew (Mac OS)

### Formula:

```bash
brew install dataversioncontrol/homebrew-dvc/dvc
```

### Cask:

```bash
brew cask install dataversioncontrol/homebrew-dvc/dvc
```

# Links

Website: https://dataversioncontrol.com

Tutorial: https://blog.dataversioncontrol.com/data-version-control-tutorial-9146715eda46

Documentation: http://dataversioncontrol.com/docs/

Discussion: https://discuss.dataversioncontrol.com/

# Related technologies

1. [Git-annex](https://git-annex.branchable.com/) - DVC uses the idea of storing the content of large files (that you don't want to see in your Git repository) in a local key-value store and uses file hardlinks/symlinks instead of the copying actual files.
2. [Git-LFS](https://git-lfs.github.com/).
3. Makefile (and it's analogues). DVC tracks dependencies (DAG).
4. [Workflow Management Systems](https://en.wikipedia.org/wiki/Workflow_management_system). DVC is workflow management system designed specificaly to manage machine learning experiments. DVC was built on top of Git.

DVC is compatible with Git for storing code and the dependency graph (DAG), but not data files cache.
Data files caches can be transferred separately - now data cache transfer throught AWS S3 and GCP storge are supported.

# How DVC works

![how_dvc_works](https://s3-us-west-2.amazonaws.com/dvc-share/images/0.9/how_dvc_works.png)

# Copyright

This project is distributed under the Apache license version 2.0 (see the LICENSE file in the project root).

By submitting a pull request for this project, you agree to license your contribution under the Apache license version 2.0 to this project.



Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

dvc-0.9.1-py2.py3-none-any.whl (67.7 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file dvc-0.9.1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for dvc-0.9.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 26dde2fd0d0916500fc20f040cb7d63eba89eb6e1ffbc99e886a1e935ffd16bc
MD5 50770854ca70a3f839120b282d881ce1
BLAKE2b-256 e247104be692edd811fdeeeb11d5753a4f2a99feef0365e89a7591eaaf6f43d7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page