Skip to main content

Simple DICOM tag editor built with wxPython and pydicom

Project description

  DVHA logo

DVHA Stats

A library of prediction and statistical process control tools. Although based on work in DVH Analytics, all statistical tools in this library are generic and not radiation oncology.

build PyPi Version LGTM Code Quality

What does it do?

  • Read data from CSV or supply as numpy array
  • Plotting
    • Simple one-variable plots from data
    • Control Charts (Univariate and Multivariate)
    • Heat Maps (correlations, PCA, etc.)
  • Perform Box-Cox transformations
  • Calculate Correlation matrices
  • Perform Multi-Variable Linear Regressions
  • Perform Principal Component Analysis (PCA)

Coming Soon:

  • Multi-Variable Regression residual and quantile plots
  • Backward-elimination for Multi-Variable Linear Regressions
  • Risk-Adjusted Control Charts using Multi-Variable Linear Regressions
  • Machine learning regressions based on scikit-learn

NOTE: This project is brand new and very much under construction.

Source-Code Installation

pip install dvha-stats

or

pip install git+https://github.com/cutright/DVHA-Stats.git

Or clone the project and run:

python setup.py install

Dependencies

Initialize and Plot Data

>>> from dvhastats.stats import DVHAStats
>>> s = DVHAStats("tests/testdata/multivariate_data.csv")
>>> s.var_names
['V1', 'V2', 'V3', 'V4', 'V5', 'V6']
>>> s.show('V1')  # or s.show(0), can provide index or var_name
Data Plot

Correlation Matrix

>>> pearson_mat = s.correlation_matrix()
>>> pearson_mat.show()
Pearson-R Correlation Matrix

Like-wise, a Spearman correlation matrix:

>>> spearman_mat = s.correlation_matrix("Spearman")
>>> spearman_mat.show()
Spearman Correlation Matrix

Univariate Control Chart

>>> ucc = s.univariate_control_charts()
>>> ucc["V1"].show()  # or ucc[0].show(), can provide index or var_name
Univariate Control Chart

Hotelling T^2

Example to calculate a Multivariate Control Chart with Hotelling T^2 values

>>> ht2 = s.hotelling_t2()
>>> ht2.show()
Multivariate Control Chart

Hotelling T^2 with Box-Cox Transformation

Example to calculate the Hotelling T^2 values and apply a Box-Cox transformation

>>> ht2_bc = s.hotelling_t2(box_cox=True)
>>> ht2_bc.show()
Multivariate Control Chart with Box-Cox Transformation

Principal Component Analysis (PCA)

>>> pca = s.pca()
>>> pca.show()
PCA Feature Heat Map

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dvha-stats-0.1.4.tar.gz (24.7 kB view details)

Uploaded Source

Built Distribution

dvha_stats-0.1.4-py3-none-any.whl (19.8 kB view details)

Uploaded Python 3

File details

Details for the file dvha-stats-0.1.4.tar.gz.

File metadata

  • Download URL: dvha-stats-0.1.4.tar.gz
  • Upload date:
  • Size: 24.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.6

File hashes

Hashes for dvha-stats-0.1.4.tar.gz
Algorithm Hash digest
SHA256 8f661805174ea31f8aa2cb8d544f3fdbd5e8b745908380f7f0943348ea6f7e67
MD5 a82a5208efba9eb248d658110fe04365
BLAKE2b-256 5827b8e0cc62bff8954417bfaf9218f29ca4cac1143277dd1708daf825986ecf

See more details on using hashes here.

File details

Details for the file dvha_stats-0.1.4-py3-none-any.whl.

File metadata

  • Download URL: dvha_stats-0.1.4-py3-none-any.whl
  • Upload date:
  • Size: 19.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.6

File hashes

Hashes for dvha_stats-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 68ebca167299fbfa0826b1bdbe98b0a5cc86f623ce370d9e986f13929036596f
MD5 109a7c12fbd07039e94e8aa2024a1a13
BLAKE2b-256 090e6d879e28fc8d1edbc3e29d2c7b0c671e5a0171b10e4dfe9a16bd01a46cef

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page