Skip to main content

Simple DICOM tag editor built with wxPython and pydicom

Project description

DVHA logo"

build PyPI Documentation Status lgtm Codecov

A library of prediction and statistical process control tools. Although based on work in DVH Analytics, all statistical tools in this library are generic and not specific to radiation oncology. See our documentation for advanced uses.

What does it do?

  • Read data from CSV or supply as numpy array

  • Basic plotting
    • Simple one-variable plots from data

    • Control Charts (Univariate and Multivariate)

    • Heat Maps (correlations, PCA, etc.)

  • Perform Box-Cox transformations

  • Calculate Correlation matrices

  • Perform Multi-Variable Linear Regressions

  • Perform Principal Component Analysis (PCA)

Other information

Dependencies

Basic Usage

from dvhastats.ui import DVHAStats
s = DVHAStats("tests/testdata/multivariate_data.csv")

>>> s.var_names
['V1', 'V2', 'V3', 'V4', 'V5', 'V6']

>>> s.show('V1')  # or s.show(0), can provide index or var_name

Basic Plot

>>> s.show(0, plot_type="hist")

Basic Histogram

Pearson-R Correlation Matrix

pearson_mat = s.correlation_matrix()
>>> pearson_mat.show()

Pearson-R Matrix

Spearman Correlation Matrix

spearman_mat = s.correlation_matrix("Spearman")
>>> spearman_mat.show()

Spearman Matrix

Univariate Control Chart

ucc = s.univariate_control_charts()
>>> ucc["V1"].show()  # or ucc[0].show(), can provide index or var_name

Control Chart

Multivariate Control Chart

ht2 = s.hotelling_t2()
>>> ht2.show()

Multivariate Control Chart

Multivariate Control Chart (w/ non-normal data)

ht2_bc = s.hotelling_t2(box_cox=True)
>>> ht2_bc.show()

Multivariate Control Chart w/ Box Cox Transformation

Multi-Variable Linear Regression

import numpy as np
y = np.random.rand(s.observations)
mvr = s.linear_reg(y)
>>> mvr.show()

DVHA logo

>>> mvr.show("prob")

DVHA logo

Principal Component Analysis (PCA)

pca = s.pca()
>>> pca.show()

Principal Component Analysis

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dvha-stats-0.1.7.tar.gz (40.2 kB view details)

Uploaded Source

Built Distributions

dvha_stats-0.1.7-py3.7.egg (50.9 kB view details)

Uploaded Source

dvha_stats-0.1.7-py3-none-any.whl (26.0 kB view details)

Uploaded Python 3

File details

Details for the file dvha-stats-0.1.7.tar.gz.

File metadata

  • Download URL: dvha-stats-0.1.7.tar.gz
  • Upload date:
  • Size: 40.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.6

File hashes

Hashes for dvha-stats-0.1.7.tar.gz
Algorithm Hash digest
SHA256 d856b9ee5972714cb4c803da25c5f3a9b4703305ad14e4c6d7566ce3e540153e
MD5 a4c73466fbb88926279279c319576eab
BLAKE2b-256 d9092b3e0338d251b9e2327b015927f541f25e63a0ef7a445c0ff6706184c198

See more details on using hashes here.

File details

Details for the file dvha_stats-0.1.7-py3.7.egg.

File metadata

  • Download URL: dvha_stats-0.1.7-py3.7.egg
  • Upload date:
  • Size: 50.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.6

File hashes

Hashes for dvha_stats-0.1.7-py3.7.egg
Algorithm Hash digest
SHA256 7951a674a6d8b640211d29d5b9d7093937f4aa1a945eaa376e5118014b8ac9d2
MD5 90196467d8f6e3fcb70485ab77ee7ddf
BLAKE2b-256 039afce5150c2d894a369fec51464c09f8f9c83eaed100d4be81dc7aa383ab9a

See more details on using hashes here.

File details

Details for the file dvha_stats-0.1.7-py3-none-any.whl.

File metadata

  • Download URL: dvha_stats-0.1.7-py3-none-any.whl
  • Upload date:
  • Size: 26.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.6

File hashes

Hashes for dvha_stats-0.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 e43ce71665beb6b04a92e736f2c182e2dfdddcb897624fda34401ffc1e830fe5
MD5 85cc1d4de217609f7a5a9911146b5008
BLAKE2b-256 263251d71774d184ceded753c78cd3d296f8ba92a3762ec7095529b89771bbe7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page