Skip to main content

Create a database of DVHs, GUI with wxPython, plots with Bokeh

Project description

DVHA logo

DVH Analytics (DVHA) is a software application for building a local database of radiation oncology treatment planning data. It imports data from DICOM-RT files (i.e., plan, dose, and structure), creates a SQL database, provides customizable plots, and provides tools for generating linear, multi-variable, and machine learning regressions.

pypi Documentation Status lgtm code quality lgtm Lines of code Repo Size Code style: black

Documentation

Be sure to check out the latest release for the user manual PDF, which is geared towards the user interface. For power-users, dvha.readthedocs.io contains detailed documentation for backend tools (e.g., if you want to perform queries with python commands).

Executables

Executable versions of DVHA can be found here. Please keep in mind this software is still in beta. If you have issues, compiling from source may be more informative.

About

DVH Analytics screenshot

In addition to viewing DVH data, this software provides methods to:

  • download queried data

  • create time-series plots of various planning and dosimetric variables

  • calculate correlations

  • generate multi-variable linear and machine learning regressions

  • share regression models with other DVHA users

  • additional screenshots available here

The code is built with these core libraries:

  • wxPython Phoenix - Build a native GUI on Windows, Mac, or Unix systems

  • Pydicom - Read, modify and write DICOM files with python code

  • dicompyler-core - A library of core radiation therapy modules for DICOM RT

  • Bokeh - Interactive Web Plotting for Python

  • scikit-learn - Machine Learning in Python

Installation

To install via pip:

$ pip install dvha

If you’ve installed via pip or setup.py, launch from your terminal with:

$ dvha

If you’ve cloned the project, but did not run the setup.py installer, launch DVHA with:

$ python dvha_app.py

See our installation notes for potential Shapely install issues on MS Windows and help setting up a PostgreSQL database if it is preferred over SQLite3.

Dependencies

Support

If you like DVHA and would like to support our mission, all we ask is that you cite us if we helped your publication, or help the DVHA community by submitting bugs, issues, feature requests, or solutions on the issues page.

Cite

DOI: https://doi.org/10.1002/acm2.12401 Cutright D, Gopalakrishnan M, Roy A, Panchal A, and Mittal BB. “DVH Analytics: A DVH database for clinicians and researchers.” Journal of Applied Clinical Medical Physics 19.5 (2018): 413-427.

The previous web-based version described in the above publication can be found here but is no longer being developed.

Selected Studies Using DVHA

5,000 Patients National Cancer Institute (5R01CA219013-03): Active 8/1/17 → 7/31/22 Retrospective NCI Phantom-Monte Carlo Dosimetry for Late Effects in Wilms Tumor Brannigan R (Co-Investigator), Kalapurakal J (PD/PI), Kazer R (Co-Investigator)

265 Patients DOI: https://doi.org/10.1016/j.ijrobp.2019.06.2509 Gross J, et al. “Determining the organ at risk for lymphedema after regional nodal irradiation in breast cancer.” International Journal of Radiation Oncology* Biology* Physics 105.3 (2019): 649-658.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dvha-0.9.5.tar.gz (1.2 MB view details)

Uploaded Source

Built Distribution

dvha-0.9.5-py3-none-any.whl (1.2 MB view details)

Uploaded Python 3

File details

Details for the file dvha-0.9.5.tar.gz.

File metadata

  • Download URL: dvha-0.9.5.tar.gz
  • Upload date:
  • Size: 1.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.8

File hashes

Hashes for dvha-0.9.5.tar.gz
Algorithm Hash digest
SHA256 2797cd342aa2b6c799699b3747bbbd13158d74ddecad4295e355fac870705228
MD5 d70c1c715defad9a0a8059c4c2e94960
BLAKE2b-256 7cc35aff0408460ad2d3b11fda9f9f35b890d289704233e657369f143c14c742

See more details on using hashes here.

File details

Details for the file dvha-0.9.5-py3-none-any.whl.

File metadata

  • Download URL: dvha-0.9.5-py3-none-any.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.8

File hashes

Hashes for dvha-0.9.5-py3-none-any.whl
Algorithm Hash digest
SHA256 b3075037ad6f37c3b89f5adba34921095a895e21accaaa7096077a8909f75756
MD5 5cb41d9cf9aba8cb379260e8d8cc2ad4
BLAKE2b-256 98a6138c4e3be08c6bfae49a54b70ad26350a88dea23ccd8ef9ee89b6c05f491

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page