Skip to main content

Ocean-compatible collection of solvers/samplers

Project description

https://img.shields.io/pypi/v/dwave-samplers.svg https://img.shields.io/pypi/pyversions/dwave-samplers.svg https://codecov.io/gh/dwavesystems/dwave-samplers/branch/main/graph/badge.svg https://circleci.com/gh/dwavesystems/dwave-samplers.svg?style=svg

dwave-samplers

Ocean software provides a variety of quantum, classical, and quantum-classical dimod samplers that run either remotely (for example, in D-Wave’s Leap environment) or locally on your CPU.

dwave-samplers implements the following classical algorithms for solving binary quadratic models (BQM):

  • Planar: an exact solver for planar Ising problems with no linear biases.

  • Random: a sampler that draws uniform random samples.

  • Simulated Annealing: a probabilistic heuristic for optimization and approximate Boltzmann sampling well suited to finding good solutions of large problems.

  • Steepest Descent: a discrete analogue of gradient descent, often used in machine learning, that quickly finds a local minimum.

  • Tabu: a heuristic that employs local search with methods to escape local minima.

  • Tree Decomposition: an exact solver for problems with low treewidth.

Planar

There are polynomial-time algorithms for finding the ground state of a planar Ising model [1].

>>> from dwave.samplers import PlanarGraphSolver
>>> solver = PlanarGraphSolver()

Get the ground state of a planar Ising model

>>> h = {}
>>> J = {(0, 1): -1, (1, 2): -1, (0, 2): 1}
>>> sampleset = solver.sample_ising(h, J)

Random

Random samplers provide a useful baseline performance comparison. The variable assignments in each sample are chosen by a coin flip.

>>> from dwave.samplers import RandomSampler
>>> sampler = RandomSampler()

Create a random binary quadratic model.

>>> import dimod
>>> bqm = dimod.generators.gnp_random_bqm(100, .5, 'BINARY')

Get the best 5 sample found in .1 seconds.

>>> sampleset = sampler.sample(bqm, time_limit=.1, max_num_samples=5)
>>> num_reads = sampleset.info['num_reads']  # the total number of samples generated

Simulated Annealing

Simulated annealing can be used for heuristic optimization or approximate Boltzmann sampling. The dwave-samplers implementation approaches the equilibrium distribution by performing updates at a sequence of decreasing temperatures, terminating at the target β.[2] Each spin is updated once in a fixed order per point per temperature according to a Metropolis-Hastings update. When the temperature is low the target distribution concentrates, at equilibrium, over ground states of the model. Samples are guaranteed to match the equilibrium for long, smooth temperature schedules.

>>> from dwave.samplers import SimulatedAnnealingSampler
>>> sampler = SimulatedAnnealingSampler()

Create a random binary quadratic model.

>>> import dimod
>>> bqm = dimod.generators.gnp_random_bqm(100, .5, 'BINARY')

Sample using simulated annealing with both the default temperature schedule and a custom one.

>>> sampleset = sampler.sample(bqm)
>>> sampleset = sampler.sample(bqm, beta_range=[.1, 4.2], beta_schedule_type='linear')

Steepest Descent

Steepest descent is the discrete analogue of gradient descent, but the best move is computed using a local minimization rather rather than computing a gradient. The dimension along which to descend is determined, at each step, by the variable flip that causes the greatest reduction in energy.

Steepest descent is fast and effective for unfrustrated problems, but it can get stuck in local minima.

The quadratic unconstrained binary optimization (QUBO) E(x, y) = x + y - 2.5 * x * y, for example, has two local minima: (0, 0) with an energy of 0 and (1, 1) with an energy of -0.5.

>>> from dwave.samplers import SteepestDescentSolver
>>> solver = SteepestDescentSolver()

Construct the QUBO:

>>> from dimod import Binaries
>>> x, y = Binaries(['x', 'y'])
>>> qubo = x + y - 2.5 * x * y

If the solver starts uphill from the global minimum, it takes the steepest path and finds the optimal solution.

>>> sampleset = solver.sample(qubo, initial_states={'x': 0, 'y': 1})
>>> print(sampleset)
   x  y energy num_oc. num_st.
0  1  1   -0.5       1       1
['BINARY', 1 rows, 1 samples, 2 variables]

If the solver starts in a local minimum, it gets stuck.

>>> sampleset = solver.sample(qubo, initial_states={'x': 0, 'y': 0})
>>> print(sampleset)
   x  y energy num_oc. num_st.
0  0  0    0.0       1       0
['BINARY', 1 rows, 1 samples, 2 variables]

Tabu

Tabu search is a heuristic that employs local search and can escape local minima by maintaining a “tabu list” of recently explored states that it does not revisit. The length of this tabu list is called the “tenure”. dwave-samplers implementats the MST2 multistart tabu search algorithm for quadratic unconstrained binary optimization (QUBO) problems.

Each read of the tabu algorithm consists of many starts. The solver takes the best non-tabu step repeatedly until it does not improve its energy any more.

>>> from dwave.samplers import TabuSampler
>>> sampler = TabuSampler()

Construct a simple problem.

>>> from dimod import Binaries
>>> a, b = Binaries(['a', 'b'])
>>> qubo = -.5 * a + b - a * b

Sample using both default and custom values of tenure and number of restarts.

>>> sampleset0 = sampler.sample(qubo)
>>> sampleset1 = sampler.sample(qubo, tenure=1, num_restarts=1)

Tree Decomposition

Tree decomposition-based solvers have a runtime that is exponential in the treewidth of the problem graph. For problems with low treewidth, the solver can find ground states very quickly. However, for even moderately dense problems, performance is very poor.

>>> from dwave.samplers import TreeDecompositionSolver
>>> solver = TreeDecompositionSolver()

Construct a large, tree-shaped problem.

>>> import dimod
>>> import networkx as nx
>>> tree = nx.balanced_tree(2, 5)  # binary tree with a height of five
>>> bqm = dimod.BinaryQuadraticModel('SPIN')
>>> bqm.set_linear(0, .5)
>>> for u, v in tree.edges:
...     bqm.set_quadratic(u, v, 1)

Because the BQM is a binary tree, it has a treewidth of 1 and can be solved exactly.

>>> sampleset = solver.sample(bqm)
>>> print(sampleset)
   0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 ... 62 energy num_oc.
0 -1 +1 +1 -1 -1 -1 -1 +1 +1 +1 +1 +1 +1 +1 +1 -1 -1 -1 ... +1  -62.5       1
['SPIN', 1 rows, 1 samples, 63 variables]

Installation

To install the core package:

pip install dwave-samplers

License

Released under the Apache License 2.0

Contributing

Ocean’s contributing guide has guidelines for contributing to Ocean packages.

Release Notes

dwave-samplers makes use of reno to manage its release notes.

When making a contribution to dwave-samplers that will affect users, create a new release note file by running

reno new your-short-descriptor-here

You can then edit the file created under releasenotes/notes/. Remove any sections not relevant to your changes. Commit the file along with your changes.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dwave_samplers-1.4.0.tar.gz (1.2 MB view details)

Uploaded Source

Built Distributions

dwave_samplers-1.4.0-cp313-cp313-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.13 Windows x86-64

dwave_samplers-1.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

dwave_samplers-1.4.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.8 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

dwave_samplers-1.4.0-cp313-cp313-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

dwave_samplers-1.4.0-cp313-cp313-macosx_10_13_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

dwave_samplers-1.4.0-cp312-cp312-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.12 Windows x86-64

dwave_samplers-1.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

dwave_samplers-1.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

dwave_samplers-1.4.0-cp312-cp312-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

dwave_samplers-1.4.0-cp312-cp312-macosx_10_13_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

dwave_samplers-1.4.0-cp311-cp311-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

dwave_samplers-1.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

dwave_samplers-1.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

dwave_samplers-1.4.0-cp311-cp311-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

dwave_samplers-1.4.0-cp311-cp311-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

dwave_samplers-1.4.0-cp310-cp310-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

dwave_samplers-1.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

dwave_samplers-1.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

dwave_samplers-1.4.0-cp310-cp310-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

dwave_samplers-1.4.0-cp310-cp310-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

dwave_samplers-1.4.0-cp39-cp39-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

dwave_samplers-1.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

dwave_samplers-1.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

dwave_samplers-1.4.0-cp39-cp39-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

dwave_samplers-1.4.0-cp39-cp39-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file dwave_samplers-1.4.0.tar.gz.

File metadata

  • Download URL: dwave_samplers-1.4.0.tar.gz
  • Upload date:
  • Size: 1.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for dwave_samplers-1.4.0.tar.gz
Algorithm Hash digest
SHA256 1e59384eb9dd8ee60c4167923c43ac0d36b2a8c950b572c7685cad590bd47156
MD5 df0637aa62f390e5a9871cfb21af03c5
BLAKE2b-256 82cd517adfee31efb6d9ed0d7a7310015038c5999cadd4c8ea7ae00e5d70bd78

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.4.0-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.4.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 88c97c606c4f5d45dc8183700939f2b6aa6ef95b0c2d93ad462c09487b03e3bd
MD5 8ea42a050155f91bd0b073ee05a847a2
BLAKE2b-256 0440c05398fa1f7ec900fce468bd3e472a77aaf6ce0b004d66bccceb0538a2a2

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 88471baba97cc7f236c4b03c2210829fe41e1702acfc690a267bf5781c84c3b6
MD5 c2bec8a7a7c2e0257750d6348966c078
BLAKE2b-256 6eb5c2b7a0c1f41716221f2b863b3bead610a9f0f0118c1588f78e6801fa8aa1

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.4.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.4.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 be461795b7f85447d6a3c15b348d53836a2de081c94385c5077eb783c1e5cd15
MD5 fd1121214c3970d01dba09fa54edca70
BLAKE2b-256 98e61fa18e8f0d3d75cfa0102e8b3ee15bd6ecb4e02d8130855faa04007e8123

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.4.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.4.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9468a0095e5fcbc6fed0f526f06ccebe045c3570e80f7f414555cc489d328caf
MD5 86f6d54f54ae55f8d015e214e74d4b31
BLAKE2b-256 db6780d6ef1f48938029bda38fe932c5dad66768435ac00854ea8228a11f479b

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.4.0-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.4.0-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 041434f9892c84d505a107f0ed78a5b0b43f6ec5be2bf0c8a9667838a39df1e8
MD5 af56a86263499dd31bbc0c385ed333a6
BLAKE2b-256 94870edb51394c7dd0f23e6a4d090fb9d02a84f2cd6dde21f9b1bc26b99f1d16

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.4.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.4.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 cc6b1a6831458385e3977afa0ae6f57fe6f52a76613dd138c398688f2f6e900b
MD5 e0b87feb7e6d43fb7a71994e8230de74
BLAKE2b-256 0db3da5b2086203db4527a8fd4d2fd9ea68e0304436fa83ffedb054b8a06c433

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 db90f6e71e24b35da1e91d32d565bab7c5f5b138d7cb68208ef46b2137983263
MD5 16c1c803a307acf177921997645bd31c
BLAKE2b-256 dd9dcca958efbcd473e03731924928382347a1116d571b282f0bcf7c75f45ddd

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f3246bc4383201ee05c0e554a2737e321354569130dd6a3d90cd091ddfd87411
MD5 1a0d9b0231c6c254a04d2545d2725678
BLAKE2b-256 1b5b988fed1d8a745de309813050f96a95da5dfaeed9d748698410e1b482efcd

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.4.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.4.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 03d845f45435ec906cbcf4cc2c643ff060e0483c03b82f17679306c1721a286c
MD5 4b2b2d3681126b01c787a33109037448
BLAKE2b-256 05c2230d28fac40e2a915974582be351e1085f7d1a309cd81e1d75ba034268ef

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.4.0-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.4.0-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 782b992e2e760730406a49afeac738e1fa8915cd65a25a811b1431124219f655
MD5 2c25e7269c972779e8a5c9cf50f95a10
BLAKE2b-256 ab317d347e1dd064db6a51165ceb659d7b1f14ec707ebc9acc9e65ec030dd236

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.4.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.4.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 1ad0d07f5d48c31de239ed00688d91d2ced9627c9132f7eb108dd4c79ea4f3c2
MD5 e800ea1314d461993f998193ccdc6408
BLAKE2b-256 ffb8b3446c4c06ca68f7d58adefae979b5a3e9c97395c9cda5f7ea8d9100874d

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9459c7f0629f51a965c814a9f42946ffcdb44477b8698503fc6fd0493c4ddfb8
MD5 4d322784d2d37919af06af0c0e7e1b7c
BLAKE2b-256 7e761b98098b740601abf85ae83c14657e51c38f1ddddd23662b791d8e70a820

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3fe5dee5bd3c9ddb6295335c0eb1b7b0056cdd0d64afcc6685506958f24d577a
MD5 7e2bb6f523d2c8e6fbe184e4fe7f3913
BLAKE2b-256 1c3e01e86a6e5928b51896a9878d3708b1bf64b8711126e8bd90ee296d0ed177

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.4.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.4.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8fd4e28d2d4ada343b9d9288ceef845463aade759fb614e91facb98c557323ee
MD5 f115df538e0a4b2cd7ce827b0ed3985b
BLAKE2b-256 df6eaedcc98907c7a6ac45023656731ef286c4cf6935601ac46bc3dbba436309

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.4.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.4.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 52633c950d4c73d399cf73db58382f413b3affe8f674731a9070a4da3bac75fa
MD5 bef58129478363bb7c2c7789bf14538c
BLAKE2b-256 f2f30e0a08314620f45c1d54228a3baae7b59276dde061afcce7403ac921d986

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.4.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.4.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4e8fe5e70319ed230bdd94b6d05984379adbc5cefb25610e99baf663d33b5169
MD5 bc203bfe0930864d8d8309b622f644b3
BLAKE2b-256 ab4995cb67aea2178880feea728d8d54fa0241943dac5da18bf88dd657700688

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 647af252e69d3dfe2df3793f1fd21e397fe16a7bf04d999428e34a89ba0143e9
MD5 541a5eeddd262371746a606c6eccf720
BLAKE2b-256 61a1451313cdcba8b312c3263d036cd0fc056b4f8db7764a96e55da4394cfe6a

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0a35841abbfe2ceaa56036a71061df966568b3f03b4408e6990563491ba4da52
MD5 9eec9ad127aa3ab3e8395cdd546e2177
BLAKE2b-256 3ccc0b8b5bbdf5f6e452e327b7ae23baa184f4ddbb7ad2491c794c86043af56f

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.4.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.4.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5a995f7ec2287525e4b7b5d4c37ce7ee3d97b31965a271b7637c5a9da037612e
MD5 a0b867957bf3cf5d8b3fb36763df9ab7
BLAKE2b-256 b32e24297e8d2451a6c66ef4fd09dbb15200d75091d1a4865e87adfd50f611d2

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.4.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.4.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 268675c867efef88e97ca591e1bfcf52dc1ca6508cd210fa6f0fde29da0cec1e
MD5 5ce98a01a9bb1b9f755de54c7e012dcc
BLAKE2b-256 d13838358eb2832d0db58137310fc827060afd11d855c47045063e35a10a1606

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.4.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.4.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 80db29be04bae8860a04555298a2b7e808160a5bf1ebad4dfabd8243b2ffc743
MD5 81a634a765aaa9493b4a714d92fce0f8
BLAKE2b-256 8a32b469d40dcf5bb9ffdeb318c41f11819f11aa5562447b3d93bba9ad5a2953

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a9028d1aca1d887afaecceca560cbfd7bab3e14f65ea2758920bd62656ef8b5c
MD5 10946b0d9ddc19f8d1a7943f69ac23cf
BLAKE2b-256 b7c8716c2e72363f21bb04c4c9d39727f5c3dc604e919af8d47474b8b0e0db2c

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ee6acda48d0cfb5ae514627007d7e0cdf9c883e3e1a8ac53320e040fee547b1a
MD5 fbe4015009cad695a11073706257adb0
BLAKE2b-256 76cd881d3a8c5cc1eb73171832a3cb36acd14b027ebd5513a3e00d4dadb08242

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.4.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.4.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f57cd1611f683dd98f552782b02685cc168dc9f66b71f9f0efafa653b125ca34
MD5 5a00d34c9c05ffc3f6a4f6b59837211f
BLAKE2b-256 0137d068f88ec0260a576ce26acba21dafb399828ad19c9f567094e16e3b44a8

See more details on using hashes here.

File details

Details for the file dwave_samplers-1.4.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for dwave_samplers-1.4.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 46a779b7b8b92412f0acbce2d1ab49db54069e5d0a26327fe4c54f84a1730f20
MD5 6ce054e43b6a37d59918128b9329c941
BLAKE2b-256 0784608f08bf0bed5b3cddd725766077152b2f78386439a93bc9cc6caea22e2c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page