a calculation framework
Project description
DL-Frame
一个及其简易的机器学习可视化框架,用户仅需实现:
- 定义模块
- 定义计算图
- 注册模块实例
框架提供了 logger,开发者可以方便地向前端输出文本 (print) 和图片 (imshow)。
参考运行逻辑:
dataset = manager.register_element('数据集')
splitter = manager.register_element('数据分割')
model = manager.register_element('模型')
judger = manager.register_element('评价指标')
train_data_test_data = splitter.split(dataset)
train_data, test_data = train_data_test_data[0], train_data_test_data[1]
model.train(train_data)
y_hat = model.test(test_data)
# if you want model.conclusion execute after y_hat, you can do this
# you can also use model.conclusion() < y_hat
y_hat > model.conclusion()
judger.judge(y_hat, test_data)
本框架仅提供 WebSocket 服务,不提供页面显示。需配合前端使用。前端代码开源在仓库。
安装方法
# 可选,新建 conda 环境
conda create -n dlframe python=3.10
conda activate dlframe
# 安装
pip install git+https://github.com/picpic2013/dlframe-back
测试用例
python tests/Display.py
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
dynamic-links-0.0.1.tar.gz
(5.6 kB
view hashes)
Built Distribution
Close
Hashes for dynamic_links-0.0.1-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 403f744a115f5361fc087e00eda96f79a8a9f5ef8bad88c815c492ad93285213 |
|
MD5 | 5532778e1e0c78dd6e5463c433ea210c |
|
BLAKE2b-256 | 037e0c0a68f6398a6dea2a8e321a09389f7a709aec8c98542c50dd27ea15ffb5 |