Skip to main content

a calculation framework

Project description

DL-Frame

一个及其简易的机器学习可视化框架,用户仅需实现:

  • 定义模块
  • 定义计算图
  • 注册模块实例

框架提供了 logger,开发者可以方便地向前端输出文本 (print) 和图片 (imshow)。


参考运行逻辑:

dataset = manager.register_element('数据集')
splitter = manager.register_element('数据分割')
model = manager.register_element('模型')
judger = manager.register_element('评价指标')

train_data_test_data = splitter.split(dataset)
train_data, test_data = train_data_test_data[0], train_data_test_data[1]
model.train(train_data)
y_hat = model.test(test_data)

# if you want model.conclusion execute after y_hat, you can do this
# you can also use model.conclusion() < y_hat
y_hat > model.conclusion()

judger.judge(y_hat, test_data)

本框架仅提供 WebSocket 服务,不提供页面显示。需配合前端使用。前端代码开源在仓库

安装方法

# 可选,新建 conda 环境
conda create -n dlframe python=3.10
conda activate dlframe

# 安装
pip install git+https://github.com/picpic2013/dlframe-back

测试用例

python tests/Display.py

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dynamic-links-0.0.1.tar.gz (5.6 kB view hashes)

Uploaded Source

Built Distribution

dynamic_links-0.0.1-py3-none-any.whl (6.7 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page