Skip to main content

dynaphopy module

Project description

PyPI version Build Status Coverage Status DOI

DynaPhoPy

Software to calculate crystal microscopic anharmonic properties from molecular dynamics (MD) using the normal-mode-decomposition technique. These properties include the phonon frequency shifts and linewidths, as well as the renormalized force constanst and thermal properties by using quasiparticle theory. This code includes interfaces for MD outputs from VASP and LAMMPS. PHONOPY code is used to obtain harmonic phonon modes.

Online manual: http://abelcarreras.github.io/DynaPhoPy/

Installation instructions

  1. Requirements

2a. Install from pypi repository

pip install dynaphopy --user

2b. Install from source (requires c compiler)

  • Install requirements from requirements.txt:
pip install -r requirements.txt --user
  • Run setup.py to install dynaphopy
python setup.py install --user

Executing this software

  1. Command line method
  • execute dynaphopy -h for detailed description of available options
    dynaphopy input_file MD_file [Options]
    
  1. Interactive mode
  • Use -i option from command line method and follow the instructions
    dynaphopy input_file MD_file -i
    
  1. Scripting method (as a module)
  • Dynaphopy can be imported as a python module
  • In examples/api_scripts directory an example script is available (script_silicon.py)
  • The comments in the script makes it (hopefully) self explained.

Input files for several materials can be found in the same example/inputs directory. More information in the online manual at: http://abelcarreras.github.io/DynaPhoPy

Contact info

Abel Carreras
abelcarreras83@gmail.com

Donostia International Physics Center (DIPC)
Donostia-San Sebastian (Spain)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dynaphopy-1.17.16.tar.gz (67.4 kB view details)

Uploaded Source

Built Distributions

dynaphopy-1.17.16-cp311-cp311-win_amd64.whl (94.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

dynaphopy-1.17.16-cp311-cp311-win32.whl (92.3 kB view details)

Uploaded CPython 3.11 Windows x86

dynaphopy-1.17.16-cp311-cp311-musllinux_1_1_x86_64.whl (220.2 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

dynaphopy-1.17.16-cp311-cp311-musllinux_1_1_i686.whl (222.3 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

dynaphopy-1.17.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (194.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

dynaphopy-1.17.16-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (194.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

dynaphopy-1.17.16-cp311-cp311-macosx_10_9_x86_64.whl (85.1 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

dynaphopy-1.17.16-cp311-cp311-macosx_10_9_universal2.whl (98.6 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

dynaphopy-1.17.16-cp310-cp310-win_amd64.whl (94.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

dynaphopy-1.17.16-cp310-cp310-win32.whl (91.7 kB view details)

Uploaded CPython 3.10 Windows x86

dynaphopy-1.17.16-cp310-cp310-musllinux_1_1_x86_64.whl (219.5 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

dynaphopy-1.17.16-cp310-cp310-musllinux_1_1_i686.whl (221.5 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

dynaphopy-1.17.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (197.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

dynaphopy-1.17.16-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (197.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

dynaphopy-1.17.16-cp310-cp310-macosx_10_9_x86_64.whl (84.4 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

dynaphopy-1.17.16-cp310-cp310-macosx_10_9_universal2.whl (97.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

dynaphopy-1.17.16-cp39-cp39-win_amd64.whl (94.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

dynaphopy-1.17.16-cp39-cp39-win32.whl (91.7 kB view details)

Uploaded CPython 3.9 Windows x86

dynaphopy-1.17.16-cp39-cp39-musllinux_1_1_x86_64.whl (219.0 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

dynaphopy-1.17.16-cp39-cp39-musllinux_1_1_i686.whl (221.0 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

dynaphopy-1.17.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (197.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

dynaphopy-1.17.16-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (197.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

dynaphopy-1.17.16-cp39-cp39-macosx_10_9_x86_64.whl (84.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

dynaphopy-1.17.16-cp39-cp39-macosx_10_9_universal2.whl (97.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

dynaphopy-1.17.16-cp38-cp38-win_amd64.whl (94.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

dynaphopy-1.17.16-cp38-cp38-win32.whl (91.7 kB view details)

Uploaded CPython 3.8 Windows x86

dynaphopy-1.17.16-cp38-cp38-musllinux_1_1_x86_64.whl (220.4 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

dynaphopy-1.17.16-cp38-cp38-musllinux_1_1_i686.whl (222.5 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

dynaphopy-1.17.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (198.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

dynaphopy-1.17.16-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (197.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

dynaphopy-1.17.16-cp38-cp38-macosx_10_9_x86_64.whl (84.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file dynaphopy-1.17.16.tar.gz.

File metadata

  • Download URL: dynaphopy-1.17.16.tar.gz
  • Upload date:
  • Size: 67.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for dynaphopy-1.17.16.tar.gz
Algorithm Hash digest
SHA256 bb69c0faf3f7e7ce3f9d22f386bc978cf22b85a24b8353d8d67594a85e540f1b
MD5 b1a14e52b96bc7e5cef7499e2338d838
BLAKE2b-256 aebe3802ab4effe5bf4f5facfbf1f97568d132a483019b2a3652e045b0d7f301

See more details on using hashes here.

File details

Details for the file dynaphopy-1.17.16-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for dynaphopy-1.17.16-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 835c999bc7528ea3d223fa6420f055d04e1a60f37f1f737a6b6af262ef4b3790
MD5 9d76042bb9c0d9825624a9e8963b27fa
BLAKE2b-256 47e8dd515528d33029d41d706f5d479533a07d20b8532e8e23dc6ed01b906fa9

See more details on using hashes here.

File details

Details for the file dynaphopy-1.17.16-cp311-cp311-win32.whl.

File metadata

  • Download URL: dynaphopy-1.17.16-cp311-cp311-win32.whl
  • Upload date:
  • Size: 92.3 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for dynaphopy-1.17.16-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 bad56ab2932f46f5b1c43342d561ef886d0c3a88cec3c0bf67138be06a9db0af
MD5 e6dc95f26f4ddfedb4d4668185cd472a
BLAKE2b-256 07fdb6eb8bac4a64dc06a6c1ee14b27f96530b7b9ce38d299115acf39b6a77a4

See more details on using hashes here.

File details

Details for the file dynaphopy-1.17.16-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for dynaphopy-1.17.16-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 53eb845b546ef8f40b8e6d44cddefca9c06775ed3f5d8a2154f4ea8d2a359a62
MD5 29497d06ae2f2c2d452f0476cc623721
BLAKE2b-256 0e931106a625da17280217415e8aca4704de480a6cad57746716ae0eb8880e93

See more details on using hashes here.

File details

Details for the file dynaphopy-1.17.16-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for dynaphopy-1.17.16-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 71b17d3ef6e0ea412c1e2014e845026e4cd692adb81ba594233fecb18c465f98
MD5 8c218b4cff27f697b560f6d305771d1e
BLAKE2b-256 23e32e67ea20ab0076ea0e0caa56978b418dd4bf39e2a65e7f019fe77dbf4268

See more details on using hashes here.

File details

Details for the file dynaphopy-1.17.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dynaphopy-1.17.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 29d4576810d6d43bf85b0136c020e827a3d9e0dddf6d150675c7ae3610ab3429
MD5 206a7a7b93c7225b02d03b837beb445b
BLAKE2b-256 c52d01981591ee2c6f41e53081678e5ab7738b43115ac4a3442514752370ae6f

See more details on using hashes here.

File details

Details for the file dynaphopy-1.17.16-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for dynaphopy-1.17.16-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 eb4335134f5bb832d13ea45dafaa243891af035d099eae7f2230ec7557e64de0
MD5 62ff8eff25e2180941461e3350fb6d3f
BLAKE2b-256 2e1755c5fc41bc1cdbe857d25743b8d6220347e6f239560ad1c400800ca61d0e

See more details on using hashes here.

File details

Details for the file dynaphopy-1.17.16-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for dynaphopy-1.17.16-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 336ef37de80d0bfce5008982beeff6934c8f2d689375d473f296b3970d2089d8
MD5 8cd5ef6206e9c147a8bef01e6b586b30
BLAKE2b-256 3c892e2e88b0d955251c4cf5f342f7d721956e0352ea7d813512fd5f5d48d371

See more details on using hashes here.

File details

Details for the file dynaphopy-1.17.16-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for dynaphopy-1.17.16-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 399157c28586c36c1d711050c19f9d1a07ef67b7346e0b5957718b434b44fb93
MD5 719e0a6b2d4cf80b1adb5088691a882a
BLAKE2b-256 9a96d1cc075abaa1dd1b865f871a49e9cb217cabcdf06dc345f07215cf427002

See more details on using hashes here.

File details

Details for the file dynaphopy-1.17.16-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for dynaphopy-1.17.16-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 af6a7c8c5701a964fbea06cd84e39af85fd217186d66042f9478413e85d2c902
MD5 fe5a72ea10d08f6a745fa3283a698203
BLAKE2b-256 035f872e6f45a85d6235f9caf7aa7e38b69eb40ef7808a9eec00bbdb24a411f5

See more details on using hashes here.

File details

Details for the file dynaphopy-1.17.16-cp310-cp310-win32.whl.

File metadata

  • Download URL: dynaphopy-1.17.16-cp310-cp310-win32.whl
  • Upload date:
  • Size: 91.7 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for dynaphopy-1.17.16-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 27c750b6092f89288e80f25eaba233609acec7308c34d92186efc2ba8123843e
MD5 33233abeaf91358f34cb34d40759b71c
BLAKE2b-256 bfda64de4e96696d34b1553dbf081c9163f2c61b26d46292a848bae4a798fcf7

See more details on using hashes here.

File details

Details for the file dynaphopy-1.17.16-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for dynaphopy-1.17.16-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0453c1f7ca182537c85a70b68cf522c8a9fbd7a6755e9c77febf3e7f694886a4
MD5 eeeb594557b1b3fb1c7987975d9658a1
BLAKE2b-256 5225ab1b405f1c793fdba434187a3fe16ffd8591f40bc533d4ad4fde19ea3e05

See more details on using hashes here.

File details

Details for the file dynaphopy-1.17.16-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for dynaphopy-1.17.16-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 24ada1a919d31e46d091f3a48f2ee80dae6eeb9fe1f299ae412e9c7693a711a0
MD5 764cbefb733b13f12bb9f86ce7264147
BLAKE2b-256 499789bbc4ffc73140ab2beca951939d90d6ab7669aedf0773241122911f054b

See more details on using hashes here.

File details

Details for the file dynaphopy-1.17.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dynaphopy-1.17.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c619eb56a5606494a02adbed3b32d4ee321b8ddc18ede40e295b5358d1b73352
MD5 f1125b3f79a5701672070213aaacce5b
BLAKE2b-256 41e62eafebd667335761c64d76a7497316473285fe544db9e05ba2ddb4caffac

See more details on using hashes here.

File details

Details for the file dynaphopy-1.17.16-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for dynaphopy-1.17.16-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c1678d4b3470f7a19d165b3aea402173cf44e775b742ee824d05634cebfc47ef
MD5 e1a84f770dd5f5254e05f18eb50ad4d0
BLAKE2b-256 c10ac760133350e30771a1008ee9cdbeaba62fd1bfc7807a00d6badce17dac00

See more details on using hashes here.

File details

Details for the file dynaphopy-1.17.16-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for dynaphopy-1.17.16-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d1a21dd952416412b845eec192e758a9ba335388ea8cc060d6ae668297f5afa9
MD5 d0a3998b967bba9f95248177fcf4e6b9
BLAKE2b-256 3bc7fdc3571a05e2a6fddb7b99f67c890c9db716d6d26312129e5f61e821931c

See more details on using hashes here.

File details

Details for the file dynaphopy-1.17.16-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for dynaphopy-1.17.16-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 c5e37dee741dc906c1a4a29eaf091cb4489c7fe384ba46005e3e33fb7c17b92b
MD5 33be31671c19f802755f21a4e4893e53
BLAKE2b-256 3a4ed4eec320b5836ae82e3ea96d148423810179f077446d56043e1213733a4d

See more details on using hashes here.

File details

Details for the file dynaphopy-1.17.16-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for dynaphopy-1.17.16-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 37f958734aaddcc731ca4167b31d59721fd7223887052473d733bf52f8637527
MD5 06db6aeb93a2e70bb51d1bd5eee3f7bc
BLAKE2b-256 913de629c97ef59dc7d017359412ff8dc4068179010be8aeccf10b01afca24ab

See more details on using hashes here.

File details

Details for the file dynaphopy-1.17.16-cp39-cp39-win32.whl.

File metadata

  • Download URL: dynaphopy-1.17.16-cp39-cp39-win32.whl
  • Upload date:
  • Size: 91.7 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for dynaphopy-1.17.16-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 32318559a5c505ed06d73686bde6fc068ac353cade3f23efc48f13a6ef15158f
MD5 b484ad224df851ee636d46d1264aa087
BLAKE2b-256 2ea2c7b624c3fc4a39d2b2a9786cb7e15998ed9c7a63bd3ecf41152d65803b5e

See more details on using hashes here.

File details

Details for the file dynaphopy-1.17.16-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for dynaphopy-1.17.16-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d9f1c44e89b789f8e729bff087ec9afb3236a72f92b4e650cefa85dafb25d645
MD5 e9b28600338993b07c97136044cf1744
BLAKE2b-256 5f2174968b0d7465a28258eb8b11c4d971b1fb8e205e3f509fd9ab28e03e919a

See more details on using hashes here.

File details

Details for the file dynaphopy-1.17.16-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for dynaphopy-1.17.16-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 ac8177bf085bcaa9de1f85c930b390f8d4c24a96387503ac52513d7cde0616e4
MD5 eb6417809c7e332354425f7e999a2401
BLAKE2b-256 3d36ac4d368859182c47de7f397e8da52527f4f6e3f7ed822c3e790c06ea8b8b

See more details on using hashes here.

File details

Details for the file dynaphopy-1.17.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dynaphopy-1.17.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 69aa66b137aaa1d9b81591d810907a907020e3389fc96e653a7e2ec40f5b3133
MD5 72b9d546fe059df051fb7b289bbeb0a9
BLAKE2b-256 6f5417b95ebf7b85d3df1761744f1e430ffd88ea6384d880c733c3a7f341850d

See more details on using hashes here.

File details

Details for the file dynaphopy-1.17.16-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for dynaphopy-1.17.16-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f070229fcbebd42fbccd203f1b5b8bc9152adfcaaaafa45de602ca57d3f1716e
MD5 31dc8fe8b73384af45c65eafef59e210
BLAKE2b-256 f309bc9c3c07f474c40a48ad50eab788e6d370608ccab5a8796bc4bf61cf9baa

See more details on using hashes here.

File details

Details for the file dynaphopy-1.17.16-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for dynaphopy-1.17.16-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6ebf3ee7cdeb8be13c2c268ba1e37b23baeaad7d4b2f4c4a7bc642c6dd2bafa5
MD5 369e7da9ea908a862ec3878e009adf0b
BLAKE2b-256 8ac46ff65e45737247f7485e9137064ae94027c56b8a86c25ca9f9616ceaa829

See more details on using hashes here.

File details

Details for the file dynaphopy-1.17.16-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for dynaphopy-1.17.16-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 8f6147bc3269d880398ca1c4cf49a2bf72ad4199cd5d6e6dd781f6e4a769cd25
MD5 5a510a7f8d440a8f8080327a7e00b773
BLAKE2b-256 7421c3bc06e6a2d3296e1901c52b2ab7cf3e1db683d9861cb447de699c93dfe6

See more details on using hashes here.

File details

Details for the file dynaphopy-1.17.16-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for dynaphopy-1.17.16-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 7ca1fd5d008eb7418b43a989d0eefe62df5d13e8a4a6f093fdc2a4489270ac21
MD5 bfe889ce48c9e49a879e6c3d39de118b
BLAKE2b-256 4f1e18a1abb6523dd11901b8afa4b5937282c18163d67fbf40f5933ab292550c

See more details on using hashes here.

File details

Details for the file dynaphopy-1.17.16-cp38-cp38-win32.whl.

File metadata

  • Download URL: dynaphopy-1.17.16-cp38-cp38-win32.whl
  • Upload date:
  • Size: 91.7 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for dynaphopy-1.17.16-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 42c2b1344dc37703aa32b290b4e11d8a7712e1f77f3600a9a0c4363a11aed682
MD5 3c80a513574f43ca34272f9a712cacb1
BLAKE2b-256 8c789ba9d31645874fef127e4a09ebf00a875b085dd7cb9655cc8ae2ca13fd1d

See more details on using hashes here.

File details

Details for the file dynaphopy-1.17.16-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for dynaphopy-1.17.16-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 78aaa394d84dcba865864401a62b30c15da08e68322d328cc03094bbd011ed0c
MD5 4204e393172afe161aaf9b2e4c6106fe
BLAKE2b-256 779d9b88c92f1859fac980b4bc6bdacb8c5b92b99d930b5cf4747960d0a36df5

See more details on using hashes here.

File details

Details for the file dynaphopy-1.17.16-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for dynaphopy-1.17.16-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 6d4c2fd041759695f62942c3ea17316d216b87d21f8a9d72e0ba74d56bfa9a27
MD5 aa7205ae4bc2ff9091abb9dc15be28d7
BLAKE2b-256 ff4fa6c098292ae3f330f0551efc785a5e154efd62d2ca7b723aac35a154a25d

See more details on using hashes here.

File details

Details for the file dynaphopy-1.17.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dynaphopy-1.17.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 51d41a281b0c290ad73bf6db315f470c8ce8d3ba1b986fd3f3916d396ff49994
MD5 b6c0a1da11113cd896e7649d8f78933e
BLAKE2b-256 1cd227338b44f49f5a3604bc3c57c913b04ccfb47e255a3036bf3abf6b356d5d

See more details on using hashes here.

File details

Details for the file dynaphopy-1.17.16-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for dynaphopy-1.17.16-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 53177815334e1eb519b09c8d398ef5fb4fdf59f2ad2172767b7d25cbd4023697
MD5 d1985d203cce3aa52350de6bbc1efd7a
BLAKE2b-256 42ff0082198ea55cd055d86e40b562e3ae452bbafcc8ddd6b93df775452bfe20

See more details on using hashes here.

File details

Details for the file dynaphopy-1.17.16-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for dynaphopy-1.17.16-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5ad219f133b38323c7d6edfaa549188a71a28da56065bd157c4befe880d280d4
MD5 128e9c515b3b41fdba0f1175fb07c800
BLAKE2b-256 d18f7dcbe85e8213fda0c5ea1c7b6a2f33c10ecb49302b5a733131bd20d9d7a6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page